Transformada Wavelet na detecÃÃo de patologias da laringe

Detalhes bibliográficos
Autor(a) principal: Raphael Torres Santos Carvalho
Data de Publicação: 2012
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFC
Texto Completo: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=8908
Resumo: A quantidade de mÃtodos nÃo invasivos de diagnÃstico tem aumentado devido à necessidade de exames simples, rÃpidos e indolores. Por conta do crescimento da tecnologia que fornece os meios necessÃrios para a extraÃÃo e processamento de sinais, novos mÃtodos de anÃlise tÃm sido desenvolvidos para compreender a complexidade dos sinais de voz. Este trabalho de dissertaÃÃo apresenta uma nova ideia para caracterizar os sinais de voz saudÃvel e patolÃgicos baseado em uma ferramenta matemÃtica amplamente conhecida na literatura, a Transformada Wavelet (WT). O conjunto de dados utilizado neste trabalho consiste de 60 amostras de vozes divididas em quatro classes de amostras, uma de indivÃduos saudÃveis e as outras trÃs de pessoas com nÃdulo vocal, edema de Reinke e disfonia neurolÃgica. Todas as amostras foram gravadas usando a vogal sustentada /a/ do PortuguÃs Brasileiro. Os resultados obtidos por todos os classificadores de padrÃes estudados mostram que a abordagem proposta usando WT à uma tÃcnica adequada para discriminaÃÃo entre vozes saudÃvel e patolÃgica, e apresentaram resultados similares ou superiores a da tÃcnica clÃssica quanto à taxa de reconhecimento.
id UFC_751896c39bed585b8eda3d44c98eaafb
oai_identifier_str oai:www.teses.ufc.br:6181
network_acronym_str UFC
network_name_str Biblioteca Digital de Teses e Dissertações da UFC
spelling info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisTransformada Wavelet na detecÃÃo de patologias da laringeWavelet Transform in the detection of pathologies of the larynx2012-03-12Charles Casimiro Cavalcante54039410378http://lattes.cnpq.br/475169916619534402196014370http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4275519D7Raphael Torres Santos CarvalhoUniversidade Federal do CearÃPrograma de PÃs-GraduaÃÃo em Engenharia de TeleinformÃticaUFCBRTeleinformÃtica Sistemas de processamento da voz Wavelet, transformada Disturbio da vozVoice Recognition Feature Extraction Wavelet Transform Vocal Fold Nodules Reinkeâs Edema Neurological Dysphonia.ENGENHARIA ELETRICAA quantidade de mÃtodos nÃo invasivos de diagnÃstico tem aumentado devido à necessidade de exames simples, rÃpidos e indolores. Por conta do crescimento da tecnologia que fornece os meios necessÃrios para a extraÃÃo e processamento de sinais, novos mÃtodos de anÃlise tÃm sido desenvolvidos para compreender a complexidade dos sinais de voz. Este trabalho de dissertaÃÃo apresenta uma nova ideia para caracterizar os sinais de voz saudÃvel e patolÃgicos baseado em uma ferramenta matemÃtica amplamente conhecida na literatura, a Transformada Wavelet (WT). O conjunto de dados utilizado neste trabalho consiste de 60 amostras de vozes divididas em quatro classes de amostras, uma de indivÃduos saudÃveis e as outras trÃs de pessoas com nÃdulo vocal, edema de Reinke e disfonia neurolÃgica. Todas as amostras foram gravadas usando a vogal sustentada /a/ do PortuguÃs Brasileiro. Os resultados obtidos por todos os classificadores de padrÃes estudados mostram que a abordagem proposta usando WT à uma tÃcnica adequada para discriminaÃÃo entre vozes saudÃvel e patolÃgica, e apresentaram resultados similares ou superiores a da tÃcnica clÃssica quanto à taxa de reconhecimento.The amount of non-invasive methods of diagnosis has increased due to the need for simple, quick and painless tests. Due to the growth of technology that provides the means for extraction and signal processing, new analytical methods have been developed to help the understanding of analysis of the complexity of the voice signals. This dissertation presents a new idea to characterize signals of healthy and pathological voice based on one mathematical tools widely known in the literature, Wavelet Transform (WT). The speech data were used in this work consists of 60 voice samples divided into four classes of samples: one from healthy individuals and three from people with vocal fold nodules, Reinkeâs edema and neurological dysphonia. All the samples were recorded using the vowel /a/ in Brazilian Portuguese. The obtained results by all the pattern classifiers studied indicate that the proposed approach using WT is a suitable technique to discriminate between healthy and pathological voices, since they perform similarly to or even better than classical technique, concerning recognition rates.CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superiorhttp://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=8908application/pdfinfo:eu-repo/semantics/openAccessporreponame:Biblioteca Digital de Teses e Dissertações da UFCinstname:Universidade Federal do Cearáinstacron:UFC2019-01-21T11:21:57Zmail@mail.com -
dc.title.pt.fl_str_mv Transformada Wavelet na detecÃÃo de patologias da laringe
dc.title.alternative.en.fl_str_mv Wavelet Transform in the detection of pathologies of the larynx
title Transformada Wavelet na detecÃÃo de patologias da laringe
spellingShingle Transformada Wavelet na detecÃÃo de patologias da laringe
Raphael Torres Santos Carvalho
TeleinformÃtica
Sistemas de processamento da voz
Wavelet, transformada
Disturbio da voz
Voice Recognition
Feature Extraction
Wavelet Transform
Vocal Fold Nodules
Reinkeâs Edema
Neurological Dysphonia.
ENGENHARIA ELETRICA
title_short Transformada Wavelet na detecÃÃo de patologias da laringe
title_full Transformada Wavelet na detecÃÃo de patologias da laringe
title_fullStr Transformada Wavelet na detecÃÃo de patologias da laringe
title_full_unstemmed Transformada Wavelet na detecÃÃo de patologias da laringe
title_sort Transformada Wavelet na detecÃÃo de patologias da laringe
author Raphael Torres Santos Carvalho
author_facet Raphael Torres Santos Carvalho
author_role author
dc.contributor.advisor1.fl_str_mv Charles Casimiro Cavalcante
dc.contributor.advisor1ID.fl_str_mv 54039410378
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/4751699166195344
dc.contributor.authorID.fl_str_mv 02196014370
dc.contributor.authorLattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4275519D7
dc.contributor.author.fl_str_mv Raphael Torres Santos Carvalho
contributor_str_mv Charles Casimiro Cavalcante
dc.subject.por.fl_str_mv TeleinformÃtica
Sistemas de processamento da voz
Wavelet, transformada
Disturbio da voz
topic TeleinformÃtica
Sistemas de processamento da voz
Wavelet, transformada
Disturbio da voz
Voice Recognition
Feature Extraction
Wavelet Transform
Vocal Fold Nodules
Reinkeâs Edema
Neurological Dysphonia.
ENGENHARIA ELETRICA
dc.subject.eng.fl_str_mv Voice Recognition
Feature Extraction
Wavelet Transform
Vocal Fold Nodules
Reinkeâs Edema
Neurological Dysphonia.
dc.subject.cnpq.fl_str_mv ENGENHARIA ELETRICA
dc.description.sponsorship.fl_txt_mv CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior
dc.description.abstract.por.fl_txt_mv A quantidade de mÃtodos nÃo invasivos de diagnÃstico tem aumentado devido à necessidade de exames simples, rÃpidos e indolores. Por conta do crescimento da tecnologia que fornece os meios necessÃrios para a extraÃÃo e processamento de sinais, novos mÃtodos de anÃlise tÃm sido desenvolvidos para compreender a complexidade dos sinais de voz. Este trabalho de dissertaÃÃo apresenta uma nova ideia para caracterizar os sinais de voz saudÃvel e patolÃgicos baseado em uma ferramenta matemÃtica amplamente conhecida na literatura, a Transformada Wavelet (WT). O conjunto de dados utilizado neste trabalho consiste de 60 amostras de vozes divididas em quatro classes de amostras, uma de indivÃduos saudÃveis e as outras trÃs de pessoas com nÃdulo vocal, edema de Reinke e disfonia neurolÃgica. Todas as amostras foram gravadas usando a vogal sustentada /a/ do PortuguÃs Brasileiro. Os resultados obtidos por todos os classificadores de padrÃes estudados mostram que a abordagem proposta usando WT à uma tÃcnica adequada para discriminaÃÃo entre vozes saudÃvel e patolÃgica, e apresentaram resultados similares ou superiores a da tÃcnica clÃssica quanto à taxa de reconhecimento.
dc.description.abstract.eng.fl_txt_mv The amount of non-invasive methods of diagnosis has increased due to the need for simple, quick and painless tests. Due to the growth of technology that provides the means for extraction and signal processing, new analytical methods have been developed to help the understanding of analysis of the complexity of the voice signals. This dissertation presents a new idea to characterize signals of healthy and pathological voice based on one mathematical tools widely known in the literature, Wavelet Transform (WT). The speech data were used in this work consists of 60 voice samples divided into four classes of samples: one from healthy individuals and three from people with vocal fold nodules, Reinkeâs edema and neurological dysphonia. All the samples were recorded using the vowel /a/ in Brazilian Portuguese. The obtained results by all the pattern classifiers studied indicate that the proposed approach using WT is a suitable technique to discriminate between healthy and pathological voices, since they perform similarly to or even better than classical technique, concerning recognition rates.
description A quantidade de mÃtodos nÃo invasivos de diagnÃstico tem aumentado devido à necessidade de exames simples, rÃpidos e indolores. Por conta do crescimento da tecnologia que fornece os meios necessÃrios para a extraÃÃo e processamento de sinais, novos mÃtodos de anÃlise tÃm sido desenvolvidos para compreender a complexidade dos sinais de voz. Este trabalho de dissertaÃÃo apresenta uma nova ideia para caracterizar os sinais de voz saudÃvel e patolÃgicos baseado em uma ferramenta matemÃtica amplamente conhecida na literatura, a Transformada Wavelet (WT). O conjunto de dados utilizado neste trabalho consiste de 60 amostras de vozes divididas em quatro classes de amostras, uma de indivÃduos saudÃveis e as outras trÃs de pessoas com nÃdulo vocal, edema de Reinke e disfonia neurolÃgica. Todas as amostras foram gravadas usando a vogal sustentada /a/ do PortuguÃs Brasileiro. Os resultados obtidos por todos os classificadores de padrÃes estudados mostram que a abordagem proposta usando WT à uma tÃcnica adequada para discriminaÃÃo entre vozes saudÃvel e patolÃgica, e apresentaram resultados similares ou superiores a da tÃcnica clÃssica quanto à taxa de reconhecimento.
publishDate 2012
dc.date.issued.fl_str_mv 2012-03-12
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
status_str publishedVersion
format masterThesis
dc.identifier.uri.fl_str_mv http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=8908
url http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=8908
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do CearÃ
dc.publisher.program.fl_str_mv Programa de PÃs-GraduaÃÃo em Engenharia de TeleinformÃtica
dc.publisher.initials.fl_str_mv UFC
dc.publisher.country.fl_str_mv BR
publisher.none.fl_str_mv Universidade Federal do CearÃ
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFC
instname:Universidade Federal do Ceará
instacron:UFC
reponame_str Biblioteca Digital de Teses e Dissertações da UFC
collection Biblioteca Digital de Teses e Dissertações da UFC
instname_str Universidade Federal do Ceará
instacron_str UFC
institution UFC
repository.name.fl_str_mv -
repository.mail.fl_str_mv mail@mail.com
_version_ 1643295167209275392