Influence of climatic seasonality in the survey of land use/cover, using geotechnologies, in a semiarid watershed.

Detalhes bibliográficos
Autor(a) principal: Anthony Rafael Soares Maia
Data de Publicação: 2015
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFC
Texto Completo: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=14971
Resumo: The dynamic of land use/cover in Brazilian semiarid watershed is under influence not only by human actions in these areas, but also by the climatic seasonality in this region. It is necessary know the relationship between the mapping of the use and land cover using remote sensing techniques and the climate seasonality of semiarid regions. Thus, the aim of this study was to use remote sensing techniques to map and classify the land use/cover in the catchment of the OrÃs reservoir and identify the influence of the climate on the variations of type of classes mapped during the studied period. The OrÃs reservoir is located in the Southwestern of the state of CearÃ, Brazil, and its catchment has 24,900 kmÂ. The survey of land use/cover of Catchment in OrÃs Reservoir (BHAO) was performed by MAXVER method (Maximum Likelihood) classification image objects using satellites image Landsat 5 - TM and Landsat 8 â OLI. The LANDSAT 5 images to 2003, 2005 and 2008 were obtained from the National Institute of Spatial Research (INPE), and the Landsat 8 image to 2013 was obtained by the United States Geological Survey (USGS). Satellite images from the second semester period to each year were used to avoid clouds and rainfall above the vegetation of the studied area. The classes of land use/cover of the catchment in the OrÃs reservoir presented a dynamic that is influenced not only by human activity in that region, but they were influenced also by factors such as climate, topography and vegetation physiology, specifically the deciduous. It was observed that in those years that occurred heavy rainfall this factor helped the classes as Caatinga Rala and Caatinga Densa. However in those years named dry like 2013, the areas of the Antropizada class increased. Results showed that the changes occurred during the studied period were caused not only by the humansâ actions in that environment but they were caused by climatic factors too. Thus its important analyze the date of the satellite images were obtained. This decrease the action of the climate in the image classify. The deciduous characteristic of Caatinga vegetation, causes changes in the areas due to changes in vegetation of the region. With the leaves falling in dry season these areas present spectral response like the Antropizada class. Higher regions favored the presence of Caatinga Densa class, due to the microclimate and the greatest difficulty that these areas are under to human action. Despite the remote sensing techniques being important tools to help us classify the land use/cover, in regions with deciduous vegetation (Caatinga) it is necessary observe the climatic seasonality, because it has heavy influence in the type of land use/cover presented in regions like Caatinga.
id UFC_9877d99ad67c23c03c2d9ad242f13361
oai_identifier_str oai:www.teses.ufc.br:9957
network_acronym_str UFC
network_name_str Biblioteca Digital de Teses e Dissertações da UFC
spelling info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisInfluence of climatic seasonality in the survey of land use/cover, using geotechnologies, in a semiarid watershed.InfluÃncia da sazonalidade climÃtica no levantamento do uso e cobertura do solo, com uso de geotecnologias, em uma bacia hidrogrÃfica do semiÃrido2015-03-27Eunice Maia de Andrade11748729349http://lattes.cnpq.br/7012348447122522Ana CÃlia Maia Meireles42685761349http://lattes.cnpq.br/2177267611104588Luis CÃsar de Aquino Lemos Filho 8082007772 http://lattes.cnpq.br/376720044677436066626129368http://lattes.cnpq.br/7471642531179379Anthony Rafael Soares MaiaUniversidade Federal do CearÃPrograma de PÃs-GraduaÃÃo em Engenharia AgrÃcolaUFCBRUso e cobertura do soloSazonalidade ClimÃticaGeotecnologiasLand use/coverClimate seasonalityGeotechnologiesENGENHARIA AGRICOLAThe dynamic of land use/cover in Brazilian semiarid watershed is under influence not only by human actions in these areas, but also by the climatic seasonality in this region. It is necessary know the relationship between the mapping of the use and land cover using remote sensing techniques and the climate seasonality of semiarid regions. Thus, the aim of this study was to use remote sensing techniques to map and classify the land use/cover in the catchment of the OrÃs reservoir and identify the influence of the climate on the variations of type of classes mapped during the studied period. The OrÃs reservoir is located in the Southwestern of the state of CearÃ, Brazil, and its catchment has 24,900 kmÂ. The survey of land use/cover of Catchment in OrÃs Reservoir (BHAO) was performed by MAXVER method (Maximum Likelihood) classification image objects using satellites image Landsat 5 - TM and Landsat 8 â OLI. The LANDSAT 5 images to 2003, 2005 and 2008 were obtained from the National Institute of Spatial Research (INPE), and the Landsat 8 image to 2013 was obtained by the United States Geological Survey (USGS). Satellite images from the second semester period to each year were used to avoid clouds and rainfall above the vegetation of the studied area. The classes of land use/cover of the catchment in the OrÃs reservoir presented a dynamic that is influenced not only by human activity in that region, but they were influenced also by factors such as climate, topography and vegetation physiology, specifically the deciduous. It was observed that in those years that occurred heavy rainfall this factor helped the classes as Caatinga Rala and Caatinga Densa. However in those years named dry like 2013, the areas of the Antropizada class increased. Results showed that the changes occurred during the studied period were caused not only by the humansâ actions in that environment but they were caused by climatic factors too. Thus its important analyze the date of the satellite images were obtained. This decrease the action of the climate in the image classify. The deciduous characteristic of Caatinga vegetation, causes changes in the areas due to changes in vegetation of the region. With the leaves falling in dry season these areas present spectral response like the Antropizada class. Higher regions favored the presence of Caatinga Densa class, due to the microclimate and the greatest difficulty that these areas are under to human action. Despite the remote sensing techniques being important tools to help us classify the land use/cover, in regions with deciduous vegetation (Caatinga) it is necessary observe the climatic seasonality, because it has heavy influence in the type of land use/cover presented in regions like Caatinga.A dinÃmica do uso e cobertura do solo de bacias hidrogrÃficas do semiÃrido brasileiro à influenciada nÃo apenas pela aÃÃo humana nessas Ãreas, mas tambÃm pela sazonalidade climÃtica dessa regiÃo. Verifica-se a necessidade do conhecimento da relaÃÃo existente entre o levantamento do uso e cobertura do solo a partir de tÃcnicas de sensoriamento remoto e a sazonalidade climÃtica de regiÃes semiÃridas. Dessa forma, objetivou-se com este estudo mapear e classificar o uso e cobertura do solo da bacia hidrogrÃfica do aÃude OrÃs atravÃs de tÃcnicas de sensoriamento remoto e identificar qual a influÃncia exercida pelo clima nas variaÃÃes das Ãreas das classes encontradas ao longo do perÃodo objeto de estudo. O aÃude OrÃs està localizado no sudoeste do estado do CearÃ, e sua bacia possui uma Ãrea de 24.900 km2. O levantamento de uso e cobertura do solo da Bacia HidrogrÃfica do AÃude OrÃs (BHAO) foi realizado atravÃs de classificaÃÃo pelo mÃtodo MAXVER (MÃxima VerossimilhanÃa) das imagens dos satÃlites LANDSAT 5 - TM e LANDSAT 8 - OLI. As imagens LANDSAT 5 dos anos de 2003, 2005 e 2008 foram obtidas junto ao Instituto Nacional de Pesquisas Espaciais (INPE), jà a imagem LANDSAT 8 do ano de 2013 foi obtida junto ao USGS (United States Geological Survey). Foram selecionadas imagens do segundo semestre de cada ano de estudo por conta da menor presenÃa de nuvens, bem como para que dessa forma fosse minimizado o efeito das precipitaÃÃes pluviomÃtricas sobre a vegetaÃÃo da regiÃo. As Ãreas das classes de uso e cobertura do solo da bacia hidrogrÃfica do aÃude OrÃs apresentaram uma dinÃmica influenciada nÃo apenas pela aÃÃo humana na Ãrea, mas tambÃm fatores como o clima, topografia e a fisiologia da vegetaÃÃo, mais precisamente a caducifÃlia. Anos com uma elevada precipitaÃÃo pluviomÃtrica favoreceram classes como Caatinga Rala e Caatinga Densa, sendo observado o contrÃrio em anos considerados secos como 2013, onde as Ãreas da classe Antropizada obtiveram um aumento considerÃvel em suas Ãreas. Observou-se que as modificaÃÃes ocorridas durante o perÃodo analisado nÃo sÃo resultantes apenas das intervenÃÃes humanas no ambiente, mas tambÃm dos fatores climÃticos. Assim deve-se levar em conta tambÃm a Ãpoca em que as imagens foram geradas para que se evite ou amenize a influencia do clima na classificaÃÃo das imagens. A caducifÃlia, caracterÃstica da vegetaÃÃo Caatinga, provoca mudanÃas nas Ãreas devido a alteraÃÃes na vegetaÃÃo da regiÃo. Com a queda das folhas na Ãpoca seca do ano essas Ãreas passam a ter a resposta espectral de Ãreas com caracterÃsticas da classe Antropizada. RegiÃes mais elevadas favoreceram a presenÃa da classe Caatinga Densa, devido ao microclima e a maior dificuldade que essas Ãreas apresentam à aÃÃo humana. Apesar das tÃcnicas de sensoriamento remoto se apresentarem como uma importante ferramenta por facilitar o levantamento das classes de uso e cobertura do solo, entende-se que em regiÃes onde a vegetaÃÃo apresenta caracterÃsticas de caducifÃlia (Caatinga), deve-se levar em conta ao sazonalidade climÃtica, pois esse fator influencia diretamente o levantamento das classes de uso e cobertura do solo presentes nas regiÃes da Caatinga.http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=14971application/pdfinfo:eu-repo/semantics/openAccessporreponame:Biblioteca Digital de Teses e Dissertações da UFCinstname:Universidade Federal do Cearáinstacron:UFC2019-01-21T11:29:11Zmail@mail.com -
dc.title.en.fl_str_mv Influence of climatic seasonality in the survey of land use/cover, using geotechnologies, in a semiarid watershed.
dc.title.alternative.pt.fl_str_mv InfluÃncia da sazonalidade climÃtica no levantamento do uso e cobertura do solo, com uso de geotecnologias, em uma bacia hidrogrÃfica do semiÃrido
title Influence of climatic seasonality in the survey of land use/cover, using geotechnologies, in a semiarid watershed.
spellingShingle Influence of climatic seasonality in the survey of land use/cover, using geotechnologies, in a semiarid watershed.
Anthony Rafael Soares Maia
Uso e cobertura do solo
Sazonalidade ClimÃtica
Geotecnologias
Land use/cover
Climate seasonality
Geotechnologies
ENGENHARIA AGRICOLA
title_short Influence of climatic seasonality in the survey of land use/cover, using geotechnologies, in a semiarid watershed.
title_full Influence of climatic seasonality in the survey of land use/cover, using geotechnologies, in a semiarid watershed.
title_fullStr Influence of climatic seasonality in the survey of land use/cover, using geotechnologies, in a semiarid watershed.
title_full_unstemmed Influence of climatic seasonality in the survey of land use/cover, using geotechnologies, in a semiarid watershed.
title_sort Influence of climatic seasonality in the survey of land use/cover, using geotechnologies, in a semiarid watershed.
author Anthony Rafael Soares Maia
author_facet Anthony Rafael Soares Maia
author_role author
dc.contributor.advisor1.fl_str_mv Eunice Maia de Andrade
dc.contributor.advisor1ID.fl_str_mv 11748729349
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/7012348447122522
dc.contributor.referee1.fl_str_mv Ana CÃlia Maia Meireles
dc.contributor.referee1ID.fl_str_mv 42685761349
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/2177267611104588
dc.contributor.referee2.fl_str_mv Luis CÃsar de Aquino Lemos Filho
dc.contributor.referee2ID.fl_str_mv 8082007772
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/3767200446774360
dc.contributor.authorID.fl_str_mv 66626129368
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/7471642531179379
dc.contributor.author.fl_str_mv Anthony Rafael Soares Maia
contributor_str_mv Eunice Maia de Andrade
Ana CÃlia Maia Meireles
Luis CÃsar de Aquino Lemos Filho
dc.subject.por.fl_str_mv Uso e cobertura do solo
Sazonalidade ClimÃtica
Geotecnologias
topic Uso e cobertura do solo
Sazonalidade ClimÃtica
Geotecnologias
Land use/cover
Climate seasonality
Geotechnologies
ENGENHARIA AGRICOLA
dc.subject.eng.fl_str_mv Land use/cover
Climate seasonality
Geotechnologies
dc.subject.cnpq.fl_str_mv ENGENHARIA AGRICOLA
dc.description.abstract.por.fl_txt_mv The dynamic of land use/cover in Brazilian semiarid watershed is under influence not only by human actions in these areas, but also by the climatic seasonality in this region. It is necessary know the relationship between the mapping of the use and land cover using remote sensing techniques and the climate seasonality of semiarid regions. Thus, the aim of this study was to use remote sensing techniques to map and classify the land use/cover in the catchment of the OrÃs reservoir and identify the influence of the climate on the variations of type of classes mapped during the studied period. The OrÃs reservoir is located in the Southwestern of the state of CearÃ, Brazil, and its catchment has 24,900 kmÂ. The survey of land use/cover of Catchment in OrÃs Reservoir (BHAO) was performed by MAXVER method (Maximum Likelihood) classification image objects using satellites image Landsat 5 - TM and Landsat 8 â OLI. The LANDSAT 5 images to 2003, 2005 and 2008 were obtained from the National Institute of Spatial Research (INPE), and the Landsat 8 image to 2013 was obtained by the United States Geological Survey (USGS). Satellite images from the second semester period to each year were used to avoid clouds and rainfall above the vegetation of the studied area. The classes of land use/cover of the catchment in the OrÃs reservoir presented a dynamic that is influenced not only by human activity in that region, but they were influenced also by factors such as climate, topography and vegetation physiology, specifically the deciduous. It was observed that in those years that occurred heavy rainfall this factor helped the classes as Caatinga Rala and Caatinga Densa. However in those years named dry like 2013, the areas of the Antropizada class increased. Results showed that the changes occurred during the studied period were caused not only by the humansâ actions in that environment but they were caused by climatic factors too. Thus its important analyze the date of the satellite images were obtained. This decrease the action of the climate in the image classify. The deciduous characteristic of Caatinga vegetation, causes changes in the areas due to changes in vegetation of the region. With the leaves falling in dry season these areas present spectral response like the Antropizada class. Higher regions favored the presence of Caatinga Densa class, due to the microclimate and the greatest difficulty that these areas are under to human action. Despite the remote sensing techniques being important tools to help us classify the land use/cover, in regions with deciduous vegetation (Caatinga) it is necessary observe the climatic seasonality, because it has heavy influence in the type of land use/cover presented in regions like Caatinga.
A dinÃmica do uso e cobertura do solo de bacias hidrogrÃficas do semiÃrido brasileiro à influenciada nÃo apenas pela aÃÃo humana nessas Ãreas, mas tambÃm pela sazonalidade climÃtica dessa regiÃo. Verifica-se a necessidade do conhecimento da relaÃÃo existente entre o levantamento do uso e cobertura do solo a partir de tÃcnicas de sensoriamento remoto e a sazonalidade climÃtica de regiÃes semiÃridas. Dessa forma, objetivou-se com este estudo mapear e classificar o uso e cobertura do solo da bacia hidrogrÃfica do aÃude OrÃs atravÃs de tÃcnicas de sensoriamento remoto e identificar qual a influÃncia exercida pelo clima nas variaÃÃes das Ãreas das classes encontradas ao longo do perÃodo objeto de estudo. O aÃude OrÃs està localizado no sudoeste do estado do CearÃ, e sua bacia possui uma Ãrea de 24.900 km2. O levantamento de uso e cobertura do solo da Bacia HidrogrÃfica do AÃude OrÃs (BHAO) foi realizado atravÃs de classificaÃÃo pelo mÃtodo MAXVER (MÃxima VerossimilhanÃa) das imagens dos satÃlites LANDSAT 5 - TM e LANDSAT 8 - OLI. As imagens LANDSAT 5 dos anos de 2003, 2005 e 2008 foram obtidas junto ao Instituto Nacional de Pesquisas Espaciais (INPE), jà a imagem LANDSAT 8 do ano de 2013 foi obtida junto ao USGS (United States Geological Survey). Foram selecionadas imagens do segundo semestre de cada ano de estudo por conta da menor presenÃa de nuvens, bem como para que dessa forma fosse minimizado o efeito das precipitaÃÃes pluviomÃtricas sobre a vegetaÃÃo da regiÃo. As Ãreas das classes de uso e cobertura do solo da bacia hidrogrÃfica do aÃude OrÃs apresentaram uma dinÃmica influenciada nÃo apenas pela aÃÃo humana na Ãrea, mas tambÃm fatores como o clima, topografia e a fisiologia da vegetaÃÃo, mais precisamente a caducifÃlia. Anos com uma elevada precipitaÃÃo pluviomÃtrica favoreceram classes como Caatinga Rala e Caatinga Densa, sendo observado o contrÃrio em anos considerados secos como 2013, onde as Ãreas da classe Antropizada obtiveram um aumento considerÃvel em suas Ãreas. Observou-se que as modificaÃÃes ocorridas durante o perÃodo analisado nÃo sÃo resultantes apenas das intervenÃÃes humanas no ambiente, mas tambÃm dos fatores climÃticos. Assim deve-se levar em conta tambÃm a Ãpoca em que as imagens foram geradas para que se evite ou amenize a influencia do clima na classificaÃÃo das imagens. A caducifÃlia, caracterÃstica da vegetaÃÃo Caatinga, provoca mudanÃas nas Ãreas devido a alteraÃÃes na vegetaÃÃo da regiÃo. Com a queda das folhas na Ãpoca seca do ano essas Ãreas passam a ter a resposta espectral de Ãreas com caracterÃsticas da classe Antropizada. RegiÃes mais elevadas favoreceram a presenÃa da classe Caatinga Densa, devido ao microclima e a maior dificuldade que essas Ãreas apresentam à aÃÃo humana. Apesar das tÃcnicas de sensoriamento remoto se apresentarem como uma importante ferramenta por facilitar o levantamento das classes de uso e cobertura do solo, entende-se que em regiÃes onde a vegetaÃÃo apresenta caracterÃsticas de caducifÃlia (Caatinga), deve-se levar em conta ao sazonalidade climÃtica, pois esse fator influencia diretamente o levantamento das classes de uso e cobertura do solo presentes nas regiÃes da Caatinga.
description The dynamic of land use/cover in Brazilian semiarid watershed is under influence not only by human actions in these areas, but also by the climatic seasonality in this region. It is necessary know the relationship between the mapping of the use and land cover using remote sensing techniques and the climate seasonality of semiarid regions. Thus, the aim of this study was to use remote sensing techniques to map and classify the land use/cover in the catchment of the OrÃs reservoir and identify the influence of the climate on the variations of type of classes mapped during the studied period. The OrÃs reservoir is located in the Southwestern of the state of CearÃ, Brazil, and its catchment has 24,900 kmÂ. The survey of land use/cover of Catchment in OrÃs Reservoir (BHAO) was performed by MAXVER method (Maximum Likelihood) classification image objects using satellites image Landsat 5 - TM and Landsat 8 â OLI. The LANDSAT 5 images to 2003, 2005 and 2008 were obtained from the National Institute of Spatial Research (INPE), and the Landsat 8 image to 2013 was obtained by the United States Geological Survey (USGS). Satellite images from the second semester period to each year were used to avoid clouds and rainfall above the vegetation of the studied area. The classes of land use/cover of the catchment in the OrÃs reservoir presented a dynamic that is influenced not only by human activity in that region, but they were influenced also by factors such as climate, topography and vegetation physiology, specifically the deciduous. It was observed that in those years that occurred heavy rainfall this factor helped the classes as Caatinga Rala and Caatinga Densa. However in those years named dry like 2013, the areas of the Antropizada class increased. Results showed that the changes occurred during the studied period were caused not only by the humansâ actions in that environment but they were caused by climatic factors too. Thus its important analyze the date of the satellite images were obtained. This decrease the action of the climate in the image classify. The deciduous characteristic of Caatinga vegetation, causes changes in the areas due to changes in vegetation of the region. With the leaves falling in dry season these areas present spectral response like the Antropizada class. Higher regions favored the presence of Caatinga Densa class, due to the microclimate and the greatest difficulty that these areas are under to human action. Despite the remote sensing techniques being important tools to help us classify the land use/cover, in regions with deciduous vegetation (Caatinga) it is necessary observe the climatic seasonality, because it has heavy influence in the type of land use/cover presented in regions like Caatinga.
publishDate 2015
dc.date.issued.fl_str_mv 2015-03-27
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
status_str publishedVersion
format masterThesis
dc.identifier.uri.fl_str_mv http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=14971
url http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=14971
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do CearÃ
dc.publisher.program.fl_str_mv Programa de PÃs-GraduaÃÃo em Engenharia AgrÃcola
dc.publisher.initials.fl_str_mv UFC
dc.publisher.country.fl_str_mv BR
publisher.none.fl_str_mv Universidade Federal do CearÃ
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFC
instname:Universidade Federal do Ceará
instacron:UFC
reponame_str Biblioteca Digital de Teses e Dissertações da UFC
collection Biblioteca Digital de Teses e Dissertações da UFC
instname_str Universidade Federal do Ceará
instacron_str UFC
institution UFC
repository.name.fl_str_mv -
repository.mail.fl_str_mv mail@mail.com
_version_ 1643295215137587200