Multilinear technics in face recognition
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFC |
Texto Completo: | http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=13381 |
Resumo: | In this dissertation, the face recognition problem is investigated from the standpoint of multilinear algebra, more specifically the tensor decomposition, and by making use of Gabor wavelets. The feature extraction occurs in two stages: first the Gabor wavelets are applied holistically in feature selection; Secondly facial images are modeled as a higher-order tensor according to the multimodal factors present. Then, the HOSVD is applied to separate the multimodal factors of the images. The proposed facial recognition approach exhibits higher average success rate and stability when there is variation in the various multimodal factors such as facial position, lighting condition and facial expression. We also propose a systematic way to perform cross-validation on tensor models to estimate the error rate in face recognition systems that explore the nature of the multimodal ensemble. Through the random partitioning of data organized as a tensor, the mode-n cross-validation provides folds as subtensors extracted of the desired mode, featuring a stratified method and susceptible to repetition of cross-validation with different partitioning. |
id |
UFC_b9d44d5bfaecc852770332e629440fc1 |
---|---|
oai_identifier_str |
oai:www.teses.ufc.br:8955 |
network_acronym_str |
UFC |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UFC |
spelling |
info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisMultilinear technics in face recognitionTÃcnicas multilineares em reconhecimento facial2014-11-07Andrà Lima FÃrrer de Almeida77024494387http://lattes.cnpq.br/1183830514857314Guilherme de Alencar Barreto32841450368http://lattes.cnpq.br/8902002461422112Carlos Eduardo Thomaz01412231701http://buscatextual.cnpq.br/buscatextual/visualizacv.do?metodo=apresentar&id=K4761662H701893697363http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4456704T6Emanuel Dario Rodrigues SenaUniversidade Federal do CearÃPrograma de PÃs-GraduaÃÃo em Engenharia de TeleinformÃticaUFCBRReconhecimento facial Wavelets de Gabor ValidaÃÃo cruzadaFace Recognition, Gabor Wavelets, Multilinear Algebra, Tensor Decomposition, Cross-ValidationTELEINFORMATICAIn this dissertation, the face recognition problem is investigated from the standpoint of multilinear algebra, more specifically the tensor decomposition, and by making use of Gabor wavelets. The feature extraction occurs in two stages: first the Gabor wavelets are applied holistically in feature selection; Secondly facial images are modeled as a higher-order tensor according to the multimodal factors present. Then, the HOSVD is applied to separate the multimodal factors of the images. The proposed facial recognition approach exhibits higher average success rate and stability when there is variation in the various multimodal factors such as facial position, lighting condition and facial expression. We also propose a systematic way to perform cross-validation on tensor models to estimate the error rate in face recognition systems that explore the nature of the multimodal ensemble. Through the random partitioning of data organized as a tensor, the mode-n cross-validation provides folds as subtensors extracted of the desired mode, featuring a stratified method and susceptible to repetition of cross-validation with different partitioning.Nesta dissertaÃÃo o problema de reconhecimento facial à investigado do ponto de vista da Ãlgebra multilinear, mais especificamente por meio de decomposiÃÃes tensoriais fazendo uso das wavelets de Gabor. A extraÃÃo de caracterÃsticas ocorre em dois estÃgios: primeiramente as wavelets de Gabor sÃo aplicadas de maneira holÃstica na seleÃÃo de caracterÃsticas; em segundo as imagens faciais sÃo modeladas como um tensor de ordem superior de acordo com o fatores multimodais presentes. Com isso aplicamos a decomposiÃÃo tensorial Higher Order Singular Value Decomposition (HOSVD) para separar os fatores que influenciam na formaÃÃo das imagens. O mÃtodo de reconhecimento facial proposto possui uma alta taxa de acerto e estabilidade quando hà variaÃÃo nos diversos fatores multimodais, tais como, posiÃÃo facial, condiÃÃo de iluminaÃÃo e expressÃo facial. Propomos ainda uma maneira sistemÃtica para realizaÃÃo da validaÃÃo cruzada em modelos tensoriais para estimaÃÃo da taxa de erro em sistemas de reconhecimento facial que exploram a natureza multilinear do conjunto de imagens. AtravÃs do particionamento aleatÃrio dos dados organizado como um tensor, a validaÃÃo cruzada modo-n proporciona a criaÃÃo de folds extraindo subtensores no modo desejado, caracterizando um mÃtodo estratificado e susceptÃvel a repetiÃÃes da validaÃÃo cruzada com diferentes particionamentos.CoordenaÃÃo de AperfeiÃoamento de NÃvel Superiorhttp://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=13381application/pdfinfo:eu-repo/semantics/openAccessporreponame:Biblioteca Digital de Teses e Dissertações da UFCinstname:Universidade Federal do Cearáinstacron:UFC2019-01-21T11:26:38Zmail@mail.com - |
dc.title.en.fl_str_mv |
Multilinear technics in face recognition |
dc.title.alternative.pt.fl_str_mv |
TÃcnicas multilineares em reconhecimento facial |
title |
Multilinear technics in face recognition |
spellingShingle |
Multilinear technics in face recognition Emanuel Dario Rodrigues Sena Reconhecimento facial Wavelets de Gabor ValidaÃÃo cruzada Face Recognition, Gabor Wavelets, Multilinear Algebra, Tensor Decomposition, Cross-Validation TELEINFORMATICA |
title_short |
Multilinear technics in face recognition |
title_full |
Multilinear technics in face recognition |
title_fullStr |
Multilinear technics in face recognition |
title_full_unstemmed |
Multilinear technics in face recognition |
title_sort |
Multilinear technics in face recognition |
author |
Emanuel Dario Rodrigues Sena |
author_facet |
Emanuel Dario Rodrigues Sena |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Andrà Lima FÃrrer de Almeida |
dc.contributor.advisor1ID.fl_str_mv |
77024494387 |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/1183830514857314 |
dc.contributor.referee1.fl_str_mv |
Guilherme de Alencar Barreto |
dc.contributor.referee1ID.fl_str_mv |
32841450368 |
dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/8902002461422112 |
dc.contributor.referee2.fl_str_mv |
Carlos Eduardo Thomaz |
dc.contributor.referee2ID.fl_str_mv |
01412231701 |
dc.contributor.referee2Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?metodo=apresentar&id=K4761662H7 |
dc.contributor.authorID.fl_str_mv |
01893697363 |
dc.contributor.authorLattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4456704T6 |
dc.contributor.author.fl_str_mv |
Emanuel Dario Rodrigues Sena |
contributor_str_mv |
Andrà Lima FÃrrer de Almeida Guilherme de Alencar Barreto Carlos Eduardo Thomaz |
dc.subject.por.fl_str_mv |
Reconhecimento facial Wavelets de Gabor ValidaÃÃo cruzada |
topic |
Reconhecimento facial Wavelets de Gabor ValidaÃÃo cruzada Face Recognition, Gabor Wavelets, Multilinear Algebra, Tensor Decomposition, Cross-Validation TELEINFORMATICA |
dc.subject.eng.fl_str_mv |
Face Recognition, Gabor Wavelets, Multilinear Algebra, Tensor Decomposition, Cross-Validation |
dc.subject.cnpq.fl_str_mv |
TELEINFORMATICA |
dc.description.sponsorship.fl_txt_mv |
CoordenaÃÃo de AperfeiÃoamento de NÃvel Superior |
dc.description.abstract.por.fl_txt_mv |
In this dissertation, the face recognition problem is investigated from the standpoint of multilinear algebra, more specifically the tensor decomposition, and by making use of Gabor wavelets. The feature extraction occurs in two stages: first the Gabor wavelets are applied holistically in feature selection; Secondly facial images are modeled as a higher-order tensor according to the multimodal factors present. Then, the HOSVD is applied to separate the multimodal factors of the images. The proposed facial recognition approach exhibits higher average success rate and stability when there is variation in the various multimodal factors such as facial position, lighting condition and facial expression. We also propose a systematic way to perform cross-validation on tensor models to estimate the error rate in face recognition systems that explore the nature of the multimodal ensemble. Through the random partitioning of data organized as a tensor, the mode-n cross-validation provides folds as subtensors extracted of the desired mode, featuring a stratified method and susceptible to repetition of cross-validation with different partitioning. Nesta dissertaÃÃo o problema de reconhecimento facial à investigado do ponto de vista da Ãlgebra multilinear, mais especificamente por meio de decomposiÃÃes tensoriais fazendo uso das wavelets de Gabor. A extraÃÃo de caracterÃsticas ocorre em dois estÃgios: primeiramente as wavelets de Gabor sÃo aplicadas de maneira holÃstica na seleÃÃo de caracterÃsticas; em segundo as imagens faciais sÃo modeladas como um tensor de ordem superior de acordo com o fatores multimodais presentes. Com isso aplicamos a decomposiÃÃo tensorial Higher Order Singular Value Decomposition (HOSVD) para separar os fatores que influenciam na formaÃÃo das imagens. O mÃtodo de reconhecimento facial proposto possui uma alta taxa de acerto e estabilidade quando hà variaÃÃo nos diversos fatores multimodais, tais como, posiÃÃo facial, condiÃÃo de iluminaÃÃo e expressÃo facial. Propomos ainda uma maneira sistemÃtica para realizaÃÃo da validaÃÃo cruzada em modelos tensoriais para estimaÃÃo da taxa de erro em sistemas de reconhecimento facial que exploram a natureza multilinear do conjunto de imagens. AtravÃs do particionamento aleatÃrio dos dados organizado como um tensor, a validaÃÃo cruzada modo-n proporciona a criaÃÃo de folds extraindo subtensores no modo desejado, caracterizando um mÃtodo estratificado e susceptÃvel a repetiÃÃes da validaÃÃo cruzada com diferentes particionamentos. |
description |
In this dissertation, the face recognition problem is investigated from the standpoint of multilinear algebra, more specifically the tensor decomposition, and by making use of Gabor wavelets. The feature extraction occurs in two stages: first the Gabor wavelets are applied holistically in feature selection; Secondly facial images are modeled as a higher-order tensor according to the multimodal factors present. Then, the HOSVD is applied to separate the multimodal factors of the images. The proposed facial recognition approach exhibits higher average success rate and stability when there is variation in the various multimodal factors such as facial position, lighting condition and facial expression. We also propose a systematic way to perform cross-validation on tensor models to estimate the error rate in face recognition systems that explore the nature of the multimodal ensemble. Through the random partitioning of data organized as a tensor, the mode-n cross-validation provides folds as subtensors extracted of the desired mode, featuring a stratified method and susceptible to repetition of cross-validation with different partitioning. |
publishDate |
2014 |
dc.date.issued.fl_str_mv |
2014-11-07 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
status_str |
publishedVersion |
format |
masterThesis |
dc.identifier.uri.fl_str_mv |
http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=13381 |
url |
http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=13381 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal do Cearà |
dc.publisher.program.fl_str_mv |
Programa de PÃs-GraduaÃÃo em Engenharia de TeleinformÃtica |
dc.publisher.initials.fl_str_mv |
UFC |
dc.publisher.country.fl_str_mv |
BR |
publisher.none.fl_str_mv |
Universidade Federal do Cearà |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFC instname:Universidade Federal do Ceará instacron:UFC |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFC |
collection |
Biblioteca Digital de Teses e Dissertações da UFC |
instname_str |
Universidade Federal do Ceará |
instacron_str |
UFC |
institution |
UFC |
repository.name.fl_str_mv |
-
|
repository.mail.fl_str_mv |
mail@mail.com |
_version_ |
1643295198881513472 |