Multilinear technics in face recognition

Detalhes bibliográficos
Autor(a) principal: Emanuel Dario Rodrigues Sena
Data de Publicação: 2014
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFC
Texto Completo: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=13381
Resumo: In this dissertation, the face recognition problem is investigated from the standpoint of multilinear algebra, more specifically the tensor decomposition, and by making use of Gabor wavelets. The feature extraction occurs in two stages: first the Gabor wavelets are applied holistically in feature selection; Secondly facial images are modeled as a higher-order tensor according to the multimodal factors present. Then, the HOSVD is applied to separate the multimodal factors of the images. The proposed facial recognition approach exhibits higher average success rate and stability when there is variation in the various multimodal factors such as facial position, lighting condition and facial expression. We also propose a systematic way to perform cross-validation on tensor models to estimate the error rate in face recognition systems that explore the nature of the multimodal ensemble. Through the random partitioning of data organized as a tensor, the mode-n cross-validation provides folds as subtensors extracted of the desired mode, featuring a stratified method and susceptible to repetition of cross-validation with different partitioning.
id UFC_b9d44d5bfaecc852770332e629440fc1
oai_identifier_str oai:www.teses.ufc.br:8955
network_acronym_str UFC
network_name_str Biblioteca Digital de Teses e Dissertações da UFC
spelling info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisMultilinear technics in face recognitionTÃcnicas multilineares em reconhecimento facial2014-11-07Andrà Lima FÃrrer de Almeida77024494387http://lattes.cnpq.br/1183830514857314Guilherme de Alencar Barreto32841450368http://lattes.cnpq.br/8902002461422112Carlos Eduardo Thomaz01412231701http://buscatextual.cnpq.br/buscatextual/visualizacv.do?metodo=apresentar&id=K4761662H701893697363http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4456704T6Emanuel Dario Rodrigues SenaUniversidade Federal do CearÃPrograma de PÃs-GraduaÃÃo em Engenharia de TeleinformÃticaUFCBRReconhecimento facial Wavelets de Gabor ValidaÃÃo cruzadaFace Recognition, Gabor Wavelets, Multilinear Algebra, Tensor Decomposition, Cross-ValidationTELEINFORMATICAIn this dissertation, the face recognition problem is investigated from the standpoint of multilinear algebra, more specifically the tensor decomposition, and by making use of Gabor wavelets. The feature extraction occurs in two stages: first the Gabor wavelets are applied holistically in feature selection; Secondly facial images are modeled as a higher-order tensor according to the multimodal factors present. Then, the HOSVD is applied to separate the multimodal factors of the images. The proposed facial recognition approach exhibits higher average success rate and stability when there is variation in the various multimodal factors such as facial position, lighting condition and facial expression. We also propose a systematic way to perform cross-validation on tensor models to estimate the error rate in face recognition systems that explore the nature of the multimodal ensemble. Through the random partitioning of data organized as a tensor, the mode-n cross-validation provides folds as subtensors extracted of the desired mode, featuring a stratified method and susceptible to repetition of cross-validation with different partitioning.Nesta dissertaÃÃo o problema de reconhecimento facial à investigado do ponto de vista da Ãlgebra multilinear, mais especificamente por meio de decomposiÃÃes tensoriais fazendo uso das wavelets de Gabor. A extraÃÃo de caracterÃsticas ocorre em dois estÃgios: primeiramente as wavelets de Gabor sÃo aplicadas de maneira holÃstica na seleÃÃo de caracterÃsticas; em segundo as imagens faciais sÃo modeladas como um tensor de ordem superior de acordo com o fatores multimodais presentes. Com isso aplicamos a decomposiÃÃo tensorial Higher Order Singular Value Decomposition (HOSVD) para separar os fatores que influenciam na formaÃÃo das imagens. O mÃtodo de reconhecimento facial proposto possui uma alta taxa de acerto e estabilidade quando hà variaÃÃo nos diversos fatores multimodais, tais como, posiÃÃo facial, condiÃÃo de iluminaÃÃo e expressÃo facial. Propomos ainda uma maneira sistemÃtica para realizaÃÃo da validaÃÃo cruzada em modelos tensoriais para estimaÃÃo da taxa de erro em sistemas de reconhecimento facial que exploram a natureza multilinear do conjunto de imagens. AtravÃs do particionamento aleatÃrio dos dados organizado como um tensor, a validaÃÃo cruzada modo-n proporciona a criaÃÃo de folds extraindo subtensores no modo desejado, caracterizando um mÃtodo estratificado e susceptÃvel a repetiÃÃes da validaÃÃo cruzada com diferentes particionamentos.CoordenaÃÃo de AperfeiÃoamento de NÃvel Superiorhttp://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=13381application/pdfinfo:eu-repo/semantics/openAccessporreponame:Biblioteca Digital de Teses e Dissertações da UFCinstname:Universidade Federal do Cearáinstacron:UFC2019-01-21T11:26:38Zmail@mail.com -
dc.title.en.fl_str_mv Multilinear technics in face recognition
dc.title.alternative.pt.fl_str_mv TÃcnicas multilineares em reconhecimento facial
title Multilinear technics in face recognition
spellingShingle Multilinear technics in face recognition
Emanuel Dario Rodrigues Sena
Reconhecimento facial
Wavelets de Gabor
ValidaÃÃo cruzada
Face Recognition, Gabor Wavelets, Multilinear Algebra, Tensor Decomposition, Cross-Validation
TELEINFORMATICA
title_short Multilinear technics in face recognition
title_full Multilinear technics in face recognition
title_fullStr Multilinear technics in face recognition
title_full_unstemmed Multilinear technics in face recognition
title_sort Multilinear technics in face recognition
author Emanuel Dario Rodrigues Sena
author_facet Emanuel Dario Rodrigues Sena
author_role author
dc.contributor.advisor1.fl_str_mv Andrà Lima FÃrrer de Almeida
dc.contributor.advisor1ID.fl_str_mv 77024494387
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/1183830514857314
dc.contributor.referee1.fl_str_mv Guilherme de Alencar Barreto
dc.contributor.referee1ID.fl_str_mv 32841450368
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/8902002461422112
dc.contributor.referee2.fl_str_mv Carlos Eduardo Thomaz
dc.contributor.referee2ID.fl_str_mv 01412231701
dc.contributor.referee2Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?metodo=apresentar&id=K4761662H7
dc.contributor.authorID.fl_str_mv 01893697363
dc.contributor.authorLattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4456704T6
dc.contributor.author.fl_str_mv Emanuel Dario Rodrigues Sena
contributor_str_mv Andrà Lima FÃrrer de Almeida
Guilherme de Alencar Barreto
Carlos Eduardo Thomaz
dc.subject.por.fl_str_mv Reconhecimento facial
Wavelets de Gabor
ValidaÃÃo cruzada
topic Reconhecimento facial
Wavelets de Gabor
ValidaÃÃo cruzada
Face Recognition, Gabor Wavelets, Multilinear Algebra, Tensor Decomposition, Cross-Validation
TELEINFORMATICA
dc.subject.eng.fl_str_mv Face Recognition, Gabor Wavelets, Multilinear Algebra, Tensor Decomposition, Cross-Validation
dc.subject.cnpq.fl_str_mv TELEINFORMATICA
dc.description.sponsorship.fl_txt_mv CoordenaÃÃo de AperfeiÃoamento de NÃvel Superior
dc.description.abstract.por.fl_txt_mv In this dissertation, the face recognition problem is investigated from the standpoint of multilinear algebra, more specifically the tensor decomposition, and by making use of Gabor wavelets. The feature extraction occurs in two stages: first the Gabor wavelets are applied holistically in feature selection; Secondly facial images are modeled as a higher-order tensor according to the multimodal factors present. Then, the HOSVD is applied to separate the multimodal factors of the images. The proposed facial recognition approach exhibits higher average success rate and stability when there is variation in the various multimodal factors such as facial position, lighting condition and facial expression. We also propose a systematic way to perform cross-validation on tensor models to estimate the error rate in face recognition systems that explore the nature of the multimodal ensemble. Through the random partitioning of data organized as a tensor, the mode-n cross-validation provides folds as subtensors extracted of the desired mode, featuring a stratified method and susceptible to repetition of cross-validation with different partitioning.
Nesta dissertaÃÃo o problema de reconhecimento facial à investigado do ponto de vista da Ãlgebra multilinear, mais especificamente por meio de decomposiÃÃes tensoriais fazendo uso das wavelets de Gabor. A extraÃÃo de caracterÃsticas ocorre em dois estÃgios: primeiramente as wavelets de Gabor sÃo aplicadas de maneira holÃstica na seleÃÃo de caracterÃsticas; em segundo as imagens faciais sÃo modeladas como um tensor de ordem superior de acordo com o fatores multimodais presentes. Com isso aplicamos a decomposiÃÃo tensorial Higher Order Singular Value Decomposition (HOSVD) para separar os fatores que influenciam na formaÃÃo das imagens. O mÃtodo de reconhecimento facial proposto possui uma alta taxa de acerto e estabilidade quando hà variaÃÃo nos diversos fatores multimodais, tais como, posiÃÃo facial, condiÃÃo de iluminaÃÃo e expressÃo facial. Propomos ainda uma maneira sistemÃtica para realizaÃÃo da validaÃÃo cruzada em modelos tensoriais para estimaÃÃo da taxa de erro em sistemas de reconhecimento facial que exploram a natureza multilinear do conjunto de imagens. AtravÃs do particionamento aleatÃrio dos dados organizado como um tensor, a validaÃÃo cruzada modo-n proporciona a criaÃÃo de folds extraindo subtensores no modo desejado, caracterizando um mÃtodo estratificado e susceptÃvel a repetiÃÃes da validaÃÃo cruzada com diferentes particionamentos.
description In this dissertation, the face recognition problem is investigated from the standpoint of multilinear algebra, more specifically the tensor decomposition, and by making use of Gabor wavelets. The feature extraction occurs in two stages: first the Gabor wavelets are applied holistically in feature selection; Secondly facial images are modeled as a higher-order tensor according to the multimodal factors present. Then, the HOSVD is applied to separate the multimodal factors of the images. The proposed facial recognition approach exhibits higher average success rate and stability when there is variation in the various multimodal factors such as facial position, lighting condition and facial expression. We also propose a systematic way to perform cross-validation on tensor models to estimate the error rate in face recognition systems that explore the nature of the multimodal ensemble. Through the random partitioning of data organized as a tensor, the mode-n cross-validation provides folds as subtensors extracted of the desired mode, featuring a stratified method and susceptible to repetition of cross-validation with different partitioning.
publishDate 2014
dc.date.issued.fl_str_mv 2014-11-07
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
status_str publishedVersion
format masterThesis
dc.identifier.uri.fl_str_mv http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=13381
url http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=13381
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do CearÃ
dc.publisher.program.fl_str_mv Programa de PÃs-GraduaÃÃo em Engenharia de TeleinformÃtica
dc.publisher.initials.fl_str_mv UFC
dc.publisher.country.fl_str_mv BR
publisher.none.fl_str_mv Universidade Federal do CearÃ
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFC
instname:Universidade Federal do Ceará
instacron:UFC
reponame_str Biblioteca Digital de Teses e Dissertações da UFC
collection Biblioteca Digital de Teses e Dissertações da UFC
instname_str Universidade Federal do Ceará
instacron_str UFC
institution UFC
repository.name.fl_str_mv -
repository.mail.fl_str_mv mail@mail.com
_version_ 1643295198881513472