CalibraÃÃo da dispersividade longitudinal de aquÃferos atravÃs do mÃtodo iterativo do gradiente de concentraÃÃo

Detalhes bibliográficos
Autor(a) principal: Jean Leite Tavares
Data de Publicação: 2014
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFC
Texto Completo: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=13317
Resumo: O entendimento de como ocorre o transporte de solutos em Ãguas subterrÃneas à fundamental para o correto gerenciamento deste recurso cada vez mais sujeito a pressÃes antrÃpicas. Para a modelagem deste processo, um parÃmetro fundamental à o coeficiente de dispersÃo hidrodinÃmica, cujo componente mais importante, em meio poroso, à a dispersividade longitudinal (αL). A determinaÃÃo de αL ocorre normalmente atravÃs de experimentos com aplicaÃÃo restrita Ãs Ãreas de interesse e resultados normalmente imprecisos. O presente trabalho teve como objetivo principal calibrar αL em aquÃferos atravÃs do MÃtodo Iterativo do Gradiente de ConcentraÃÃo (MIGC) elaborado a partir de uma adaptaÃÃo da metodologia proposta para o MÃtodo Iterativo do Gradiente HidrÃulico (MIGH). O processo se inicia a partir da simulaÃÃo hidrodinÃmica, posteriormente sÃo inseridas concentraÃÃes obtidas em campo ou hipotÃticas no modelo de simulaÃÃo de transporte de solutos. Em seguida à gerada uma matriz de concentraÃÃes que servirà de base para o processo iterativo do MIGC. Foram estruturados dois modelos, um denominado modelo observado ou fixo, no qual as concentraÃÃes de campo sÃo fixadas e outro modelo denominado de calculado ou nÃo fixo. Ao longo do processo de calibraÃÃo sÃo geradas matrizes de concentraÃÃes que permitem calcular os gradientes espaciais de concentraÃÃo nos modelos fixo e nÃo fixo. A mÃdia dos Ãngulos entre os gradientes de concentraÃÃes observados e calculados e o erro mÃdio quadrÃtico sÃo os critÃrios de convergÃncia para aferir o processo de calibraÃÃo. Nas cinco modelagens apresentadas, os resultados para estes dois critÃrios indicam a eficiÃncia do mÃtodo de calibraÃÃo. Seguindo a metodologia clÃssica de calibraÃÃo de parÃmetros, no MIGC as iteraÃÃes continuam enquanto os valores mÃnimos para os referidos critÃrios nÃo forem atingidos e ocorre, por conseguinte, a alteraÃÃo dos valores da dispersividade longitudinal entre as iteraÃÃes. Este mecanismo à baseado na razÃo entre os gradientes de concentraÃÃes observados e calculados em cada uma das cÃlulas do modelo. Os resultados foram obtidos a partir do uso de concentraÃÃes de nitrato em dois exemplos hipotÃticos com graus de complexidade diferenciados e um caso real aplicado na regiÃo do municÃpio do Crato, inserido na Bacia Sedimentar do Araripe, situada no sul do estado do CearÃ, Brasil. Para os casos estudados houve uma convergÃncia expressiva das mÃdias dos Ãngulos formados entre os gradientes de concentraÃÃo observados e calculados e do erro mÃdio quadrÃtico das concentraÃÃes, obtendo-se, como resultado final, uma matriz com a maioria dos valores de αL prÃximos aos determinados inicialmente. O MIGC se apresenta como um mÃtodo prÃtico e rÃpido para a calibraÃÃo da dispersividade longitudinal. Sugere-se o desenvolvimento de um programa computacional que automatize o MIGC para que o mesmo seja otimizado em situaÃÃes mais complexas.
id UFC_c1c151b7ba3cd33788821d4aabee196b
oai_identifier_str oai:www.teses.ufc.br:8927
network_acronym_str UFC
network_name_str Biblioteca Digital de Teses e Dissertações da UFC
spelling info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisCalibraÃÃo da dispersividade longitudinal de aquÃferos atravÃs do mÃtodo iterativo do gradiente de concentraÃÃoCalibration of longitudinal dispersion of aquifers through the iterative method of concentration gradient2014-11-27Marco AurÃlio Holanda de Castro27958892187Paulo Roberto Lacerda Tavares82244685349http://lattes.cnpq.br/9099116287225122 Horst Frischkorn14274434320Andrà Luis Calado AraÃjo37695045268http://lattes.cnpq.br/7133712883742750Mariano de Franca Alencar Neto77832884304http://lattes.cnpq.br/3538573584743629Rubens Sonsol Gondim25942018391http://lattes.cnpq.br/7536171877839464 96984465400http://lattes.cnpq.br/5264177368997967Jean Leite TavaresUniversidade Federal do CearÃPrograma de PÃs-GraduaÃÃo em Engenharia CivilUFCBRModelagem computacionalÃguas subterrÃneascomputational modeling, pollutant dispersion, underground waterENGENHARIA CIVILO entendimento de como ocorre o transporte de solutos em Ãguas subterrÃneas à fundamental para o correto gerenciamento deste recurso cada vez mais sujeito a pressÃes antrÃpicas. Para a modelagem deste processo, um parÃmetro fundamental à o coeficiente de dispersÃo hidrodinÃmica, cujo componente mais importante, em meio poroso, à a dispersividade longitudinal (αL). A determinaÃÃo de αL ocorre normalmente atravÃs de experimentos com aplicaÃÃo restrita Ãs Ãreas de interesse e resultados normalmente imprecisos. O presente trabalho teve como objetivo principal calibrar αL em aquÃferos atravÃs do MÃtodo Iterativo do Gradiente de ConcentraÃÃo (MIGC) elaborado a partir de uma adaptaÃÃo da metodologia proposta para o MÃtodo Iterativo do Gradiente HidrÃulico (MIGH). O processo se inicia a partir da simulaÃÃo hidrodinÃmica, posteriormente sÃo inseridas concentraÃÃes obtidas em campo ou hipotÃticas no modelo de simulaÃÃo de transporte de solutos. Em seguida à gerada uma matriz de concentraÃÃes que servirà de base para o processo iterativo do MIGC. Foram estruturados dois modelos, um denominado modelo observado ou fixo, no qual as concentraÃÃes de campo sÃo fixadas e outro modelo denominado de calculado ou nÃo fixo. Ao longo do processo de calibraÃÃo sÃo geradas matrizes de concentraÃÃes que permitem calcular os gradientes espaciais de concentraÃÃo nos modelos fixo e nÃo fixo. A mÃdia dos Ãngulos entre os gradientes de concentraÃÃes observados e calculados e o erro mÃdio quadrÃtico sÃo os critÃrios de convergÃncia para aferir o processo de calibraÃÃo. Nas cinco modelagens apresentadas, os resultados para estes dois critÃrios indicam a eficiÃncia do mÃtodo de calibraÃÃo. Seguindo a metodologia clÃssica de calibraÃÃo de parÃmetros, no MIGC as iteraÃÃes continuam enquanto os valores mÃnimos para os referidos critÃrios nÃo forem atingidos e ocorre, por conseguinte, a alteraÃÃo dos valores da dispersividade longitudinal entre as iteraÃÃes. Este mecanismo à baseado na razÃo entre os gradientes de concentraÃÃes observados e calculados em cada uma das cÃlulas do modelo. Os resultados foram obtidos a partir do uso de concentraÃÃes de nitrato em dois exemplos hipotÃticos com graus de complexidade diferenciados e um caso real aplicado na regiÃo do municÃpio do Crato, inserido na Bacia Sedimentar do Araripe, situada no sul do estado do CearÃ, Brasil. Para os casos estudados houve uma convergÃncia expressiva das mÃdias dos Ãngulos formados entre os gradientes de concentraÃÃo observados e calculados e do erro mÃdio quadrÃtico das concentraÃÃes, obtendo-se, como resultado final, uma matriz com a maioria dos valores de αL prÃximos aos determinados inicialmente. O MIGC se apresenta como um mÃtodo prÃtico e rÃpido para a calibraÃÃo da dispersividade longitudinal. Sugere-se o desenvolvimento de um programa computacional que automatize o MIGC para que o mesmo seja otimizado em situaÃÃes mais complexas.The understanding of how the transport of solutes in ground water occurs is critical to the proper management of this resource increasingly subjected to thropogenic pressures. In order to model this process, a key parameter is the coefficient of hydrodynamic dispersion, whose most important component in porous environments is the longitudinal dispersivity (αL). The determination of αL usually takes place through experiments restricted to areas of interest and with often inaccurate results. Numerical methods are also used in order to attain parameter estimation. This study aimed mainly at calibrating αL in aquifers through the Iterative Method of the Gradient of Concentration (IMGC) derived from an adaptation of the methodology proposed for the Iterative Method of Hydraulic Gradient (IMHG). The process starts from the hydrodynamic simulation. Later, concentrations obtained from fields or in a hypothetic way are inserted using the model of simulation of solute transportation. Then, a matrix of concentrations is generated, which will work as the basis for the iterative process of IMGC. Two models were structured: one called observed or fixed model in which the concentration field is fixed and another model named calculated or not fixed. Throughout the calibration process arrays of concentrations are generated and used for calculating the spatial concentration of gradients in fixed and not fixed models. The average angle between the gradients of observed and calculated concentrations and the mean squared error are the convergence criteria to assess the calibration process. In the five models presented in this research, the results for these two criteria indicate the efficiency of the calibration method. Following the classical methodology of parameter calibration in the IMGC iterations continue as the minimum values for these criteria are not attained, therefore, the change of the longitudinal dispersivity varies among iterations. This mechanism is based on the ratio between the observed and calculated gradients of concentrations at each model cells. The results were obtained from the use of nitrate concentrations at two hypothetical samples with different degrees of complexity and also with a real case applied int he municipality of Crato, inserted in the Sedimentary Basin region of Araripe. For the cases analyzed in this study, there was a significant decay of the average angle formed between the gradients of observed and calculated concentration and the mean squared error of concentrations, obtaining as a result, a matrix with αL values close to those initially stipulated. IMGC presents itself as a practical method. It is suggested the development of a computer program that automates IMGC so that it is better used in more complex situation.nÃo hÃhttp://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=13317application/pdfinfo:eu-repo/semantics/openAccessporreponame:Biblioteca Digital de Teses e Dissertações da UFCinstname:Universidade Federal do Cearáinstacron:UFC2019-01-21T11:26:42Zmail@mail.com -
dc.title.pt.fl_str_mv CalibraÃÃo da dispersividade longitudinal de aquÃferos atravÃs do mÃtodo iterativo do gradiente de concentraÃÃo
dc.title.alternative.en.fl_str_mv Calibration of longitudinal dispersion of aquifers through the iterative method of concentration gradient
title CalibraÃÃo da dispersividade longitudinal de aquÃferos atravÃs do mÃtodo iterativo do gradiente de concentraÃÃo
spellingShingle CalibraÃÃo da dispersividade longitudinal de aquÃferos atravÃs do mÃtodo iterativo do gradiente de concentraÃÃo
Jean Leite Tavares
Modelagem computacional
Ãguas subterrÃneas
computational modeling, pollutant dispersion, underground water
ENGENHARIA CIVIL
title_short CalibraÃÃo da dispersividade longitudinal de aquÃferos atravÃs do mÃtodo iterativo do gradiente de concentraÃÃo
title_full CalibraÃÃo da dispersividade longitudinal de aquÃferos atravÃs do mÃtodo iterativo do gradiente de concentraÃÃo
title_fullStr CalibraÃÃo da dispersividade longitudinal de aquÃferos atravÃs do mÃtodo iterativo do gradiente de concentraÃÃo
title_full_unstemmed CalibraÃÃo da dispersividade longitudinal de aquÃferos atravÃs do mÃtodo iterativo do gradiente de concentraÃÃo
title_sort CalibraÃÃo da dispersividade longitudinal de aquÃferos atravÃs do mÃtodo iterativo do gradiente de concentraÃÃo
author Jean Leite Tavares
author_facet Jean Leite Tavares
author_role author
dc.contributor.advisor1.fl_str_mv Marco AurÃlio Holanda de Castro
dc.contributor.advisor1ID.fl_str_mv 27958892187
dc.contributor.advisor-co1.fl_str_mv Paulo Roberto Lacerda Tavares
dc.contributor.advisor-co1ID.fl_str_mv 82244685349
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/9099116287225122
dc.contributor.referee1.fl_str_mv Horst Frischkorn
dc.contributor.referee1ID.fl_str_mv 14274434320
dc.contributor.referee2.fl_str_mv Andrà Luis Calado AraÃjo
dc.contributor.referee2ID.fl_str_mv 37695045268
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/7133712883742750
dc.contributor.referee3.fl_str_mv Mariano de Franca Alencar Neto
dc.contributor.referee3ID.fl_str_mv 77832884304
dc.contributor.referee3Lattes.fl_str_mv http://lattes.cnpq.br/3538573584743629
dc.contributor.referee4.fl_str_mv Rubens Sonsol Gondim
dc.contributor.referee4ID.fl_str_mv 25942018391
dc.contributor.referee4Lattes.fl_str_mv http://lattes.cnpq.br/7536171877839464
dc.contributor.authorID.fl_str_mv 96984465400
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/5264177368997967
dc.contributor.author.fl_str_mv Jean Leite Tavares
contributor_str_mv Marco AurÃlio Holanda de Castro
Paulo Roberto Lacerda Tavares
Horst Frischkorn
Andrà Luis Calado AraÃjo
Mariano de Franca Alencar Neto
Rubens Sonsol Gondim
dc.subject.por.fl_str_mv Modelagem computacional
Ãguas subterrÃneas
topic Modelagem computacional
Ãguas subterrÃneas
computational modeling, pollutant dispersion, underground water
ENGENHARIA CIVIL
dc.subject.eng.fl_str_mv computational modeling, pollutant dispersion, underground water
dc.subject.cnpq.fl_str_mv ENGENHARIA CIVIL
dc.description.sponsorship.fl_txt_mv nÃo hÃ
dc.description.abstract.por.fl_txt_mv O entendimento de como ocorre o transporte de solutos em Ãguas subterrÃneas à fundamental para o correto gerenciamento deste recurso cada vez mais sujeito a pressÃes antrÃpicas. Para a modelagem deste processo, um parÃmetro fundamental à o coeficiente de dispersÃo hidrodinÃmica, cujo componente mais importante, em meio poroso, à a dispersividade longitudinal (αL). A determinaÃÃo de αL ocorre normalmente atravÃs de experimentos com aplicaÃÃo restrita Ãs Ãreas de interesse e resultados normalmente imprecisos. O presente trabalho teve como objetivo principal calibrar αL em aquÃferos atravÃs do MÃtodo Iterativo do Gradiente de ConcentraÃÃo (MIGC) elaborado a partir de uma adaptaÃÃo da metodologia proposta para o MÃtodo Iterativo do Gradiente HidrÃulico (MIGH). O processo se inicia a partir da simulaÃÃo hidrodinÃmica, posteriormente sÃo inseridas concentraÃÃes obtidas em campo ou hipotÃticas no modelo de simulaÃÃo de transporte de solutos. Em seguida à gerada uma matriz de concentraÃÃes que servirà de base para o processo iterativo do MIGC. Foram estruturados dois modelos, um denominado modelo observado ou fixo, no qual as concentraÃÃes de campo sÃo fixadas e outro modelo denominado de calculado ou nÃo fixo. Ao longo do processo de calibraÃÃo sÃo geradas matrizes de concentraÃÃes que permitem calcular os gradientes espaciais de concentraÃÃo nos modelos fixo e nÃo fixo. A mÃdia dos Ãngulos entre os gradientes de concentraÃÃes observados e calculados e o erro mÃdio quadrÃtico sÃo os critÃrios de convergÃncia para aferir o processo de calibraÃÃo. Nas cinco modelagens apresentadas, os resultados para estes dois critÃrios indicam a eficiÃncia do mÃtodo de calibraÃÃo. Seguindo a metodologia clÃssica de calibraÃÃo de parÃmetros, no MIGC as iteraÃÃes continuam enquanto os valores mÃnimos para os referidos critÃrios nÃo forem atingidos e ocorre, por conseguinte, a alteraÃÃo dos valores da dispersividade longitudinal entre as iteraÃÃes. Este mecanismo à baseado na razÃo entre os gradientes de concentraÃÃes observados e calculados em cada uma das cÃlulas do modelo. Os resultados foram obtidos a partir do uso de concentraÃÃes de nitrato em dois exemplos hipotÃticos com graus de complexidade diferenciados e um caso real aplicado na regiÃo do municÃpio do Crato, inserido na Bacia Sedimentar do Araripe, situada no sul do estado do CearÃ, Brasil. Para os casos estudados houve uma convergÃncia expressiva das mÃdias dos Ãngulos formados entre os gradientes de concentraÃÃo observados e calculados e do erro mÃdio quadrÃtico das concentraÃÃes, obtendo-se, como resultado final, uma matriz com a maioria dos valores de αL prÃximos aos determinados inicialmente. O MIGC se apresenta como um mÃtodo prÃtico e rÃpido para a calibraÃÃo da dispersividade longitudinal. Sugere-se o desenvolvimento de um programa computacional que automatize o MIGC para que o mesmo seja otimizado em situaÃÃes mais complexas.
dc.description.abstract.eng.fl_txt_mv The understanding of how the transport of solutes in ground water occurs is critical to the proper management of this resource increasingly subjected to thropogenic pressures. In order to model this process, a key parameter is the coefficient of hydrodynamic dispersion, whose most important component in porous environments is the longitudinal dispersivity (αL). The determination of αL usually takes place through experiments restricted to areas of interest and with often inaccurate results. Numerical methods are also used in order to attain parameter estimation. This study aimed mainly at calibrating αL in aquifers through the Iterative Method of the Gradient of Concentration (IMGC) derived from an adaptation of the methodology proposed for the Iterative Method of Hydraulic Gradient (IMHG). The process starts from the hydrodynamic simulation. Later, concentrations obtained from fields or in a hypothetic way are inserted using the model of simulation of solute transportation. Then, a matrix of concentrations is generated, which will work as the basis for the iterative process of IMGC. Two models were structured: one called observed or fixed model in which the concentration field is fixed and another model named calculated or not fixed. Throughout the calibration process arrays of concentrations are generated and used for calculating the spatial concentration of gradients in fixed and not fixed models. The average angle between the gradients of observed and calculated concentrations and the mean squared error are the convergence criteria to assess the calibration process. In the five models presented in this research, the results for these two criteria indicate the efficiency of the calibration method. Following the classical methodology of parameter calibration in the IMGC iterations continue as the minimum values for these criteria are not attained, therefore, the change of the longitudinal dispersivity varies among iterations. This mechanism is based on the ratio between the observed and calculated gradients of concentrations at each model cells. The results were obtained from the use of nitrate concentrations at two hypothetical samples with different degrees of complexity and also with a real case applied int he municipality of Crato, inserted in the Sedimentary Basin region of Araripe. For the cases analyzed in this study, there was a significant decay of the average angle formed between the gradients of observed and calculated concentration and the mean squared error of concentrations, obtaining as a result, a matrix with αL values close to those initially stipulated. IMGC presents itself as a practical method. It is suggested the development of a computer program that automates IMGC so that it is better used in more complex situation.
description O entendimento de como ocorre o transporte de solutos em Ãguas subterrÃneas à fundamental para o correto gerenciamento deste recurso cada vez mais sujeito a pressÃes antrÃpicas. Para a modelagem deste processo, um parÃmetro fundamental à o coeficiente de dispersÃo hidrodinÃmica, cujo componente mais importante, em meio poroso, à a dispersividade longitudinal (αL). A determinaÃÃo de αL ocorre normalmente atravÃs de experimentos com aplicaÃÃo restrita Ãs Ãreas de interesse e resultados normalmente imprecisos. O presente trabalho teve como objetivo principal calibrar αL em aquÃferos atravÃs do MÃtodo Iterativo do Gradiente de ConcentraÃÃo (MIGC) elaborado a partir de uma adaptaÃÃo da metodologia proposta para o MÃtodo Iterativo do Gradiente HidrÃulico (MIGH). O processo se inicia a partir da simulaÃÃo hidrodinÃmica, posteriormente sÃo inseridas concentraÃÃes obtidas em campo ou hipotÃticas no modelo de simulaÃÃo de transporte de solutos. Em seguida à gerada uma matriz de concentraÃÃes que servirà de base para o processo iterativo do MIGC. Foram estruturados dois modelos, um denominado modelo observado ou fixo, no qual as concentraÃÃes de campo sÃo fixadas e outro modelo denominado de calculado ou nÃo fixo. Ao longo do processo de calibraÃÃo sÃo geradas matrizes de concentraÃÃes que permitem calcular os gradientes espaciais de concentraÃÃo nos modelos fixo e nÃo fixo. A mÃdia dos Ãngulos entre os gradientes de concentraÃÃes observados e calculados e o erro mÃdio quadrÃtico sÃo os critÃrios de convergÃncia para aferir o processo de calibraÃÃo. Nas cinco modelagens apresentadas, os resultados para estes dois critÃrios indicam a eficiÃncia do mÃtodo de calibraÃÃo. Seguindo a metodologia clÃssica de calibraÃÃo de parÃmetros, no MIGC as iteraÃÃes continuam enquanto os valores mÃnimos para os referidos critÃrios nÃo forem atingidos e ocorre, por conseguinte, a alteraÃÃo dos valores da dispersividade longitudinal entre as iteraÃÃes. Este mecanismo à baseado na razÃo entre os gradientes de concentraÃÃes observados e calculados em cada uma das cÃlulas do modelo. Os resultados foram obtidos a partir do uso de concentraÃÃes de nitrato em dois exemplos hipotÃticos com graus de complexidade diferenciados e um caso real aplicado na regiÃo do municÃpio do Crato, inserido na Bacia Sedimentar do Araripe, situada no sul do estado do CearÃ, Brasil. Para os casos estudados houve uma convergÃncia expressiva das mÃdias dos Ãngulos formados entre os gradientes de concentraÃÃo observados e calculados e do erro mÃdio quadrÃtico das concentraÃÃes, obtendo-se, como resultado final, uma matriz com a maioria dos valores de αL prÃximos aos determinados inicialmente. O MIGC se apresenta como um mÃtodo prÃtico e rÃpido para a calibraÃÃo da dispersividade longitudinal. Sugere-se o desenvolvimento de um programa computacional que automatize o MIGC para que o mesmo seja otimizado em situaÃÃes mais complexas.
publishDate 2014
dc.date.issued.fl_str_mv 2014-11-27
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
status_str publishedVersion
format doctoralThesis
dc.identifier.uri.fl_str_mv http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=13317
url http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=13317
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do CearÃ
dc.publisher.program.fl_str_mv Programa de PÃs-GraduaÃÃo em Engenharia Civil
dc.publisher.initials.fl_str_mv UFC
dc.publisher.country.fl_str_mv BR
publisher.none.fl_str_mv Universidade Federal do CearÃ
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFC
instname:Universidade Federal do Ceará
instacron:UFC
reponame_str Biblioteca Digital de Teses e Dissertações da UFC
collection Biblioteca Digital de Teses e Dissertações da UFC
instname_str Universidade Federal do Ceará
instacron_str UFC
institution UFC
repository.name.fl_str_mv -
repository.mail.fl_str_mv mail@mail.com
_version_ 1643295199158337536