Co-anaerobic digestion of microalgae and glycerol from biodiesel residual
Autor(a) principal: | |
---|---|
Data de Publicação: | 2012 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFC |
Texto Completo: | http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=8714 |
Resumo: | Microalgae, microscopic life forms with photosynthetic capacity, produce oxygen thanks to light energy. Due to this capacity, microalgae are used for sewage treatment in stabilization ponds, however, this activity generates a large amount of microalgal biomass. In view of this excess of biomass production and its disposal in water bodies produces unpleasant effects, it has been evaluated the re-use of this biomass as a substrate for methane production in anaerobic digestion. Since microalgae have a rigid cell wall, the application of microalgae hydrolysis tests was necessary in order to improve its biodegradability. Heat pretreatment for 30 minutes at 120ÂC and 1 kgf/cm2 resulted in the best pretreatment applied. In order to improve C/N ratio, residual glycerol coming from biodiesel production was used to perform co-digestion with microalgae. Residual glycerol coming from biodiesel production (1Kg of glycerol per 10 Kg of biodiesel generated) is an impure residue which is also produced at large scale as a byproduct from the trans-esterification of fats and oils. In fact, the presence of impurities limits its applications. In this study, different COD/N ratios of 20 (phase 2), 40 (phase 3) and 70 (phase 4) were tested and the organic loading rate (OLR) applied ranged from 0,06 to 0,75 kg/m3.d. In the phase 1 only microalgae was used on the influent. Two modified UASB reactors were used. One of them was fed with pretreated microalgae, while the other one was fed with non-pretreated microalgae. Both of them were operated in co-digestion with glycerol. COD removal efficiencies ranged between 40% and 90%. Biogas produced presented values of 73% and 84% for each bioreactor treating pretreated and non-pretreated microalgae, respectively. Neither nitrogen nor ammonia and total and volatile suspended solids was significantly removed. Moreover, microalgae were the sole source of macro and micro-nutrients in this work. Sodium bicarbonate was used as a buffer during the phase 4, since pH fall down enough to harm the anaerobic digestion process at the beginning of phase 4. Based on the maintenance of adequate VFA/Alk ratios, both reactors presented a stable operation, specially the reactors treating pre-treated microalgae. Instability periods were mainly observed in some operation phases in the reactor without pretreatment. Specific methanogenic activity tests were carried out in order to evaluate the quality of the inoculum in terms of activity and methane production. Methane production presented a mean value of 0,26 g DQO-CH4/g SSV.d. |
id |
UFC_d22e28657e9321deeb6d0584c608a471 |
---|---|
oai_identifier_str |
oai:www.teses.ufc.br:6087 |
network_acronym_str |
UFC |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UFC |
spelling |
info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisCo-anaerobic digestion of microalgae and glycerol from biodiesel residualCo-digestÃo anaerÃbia de microalgas e de glicerol residual do biodiesel2012-06-01Ronaldo Stefanutti02660005842http://lattes.cnpq.br/2381599257044388 Alexandre Colzi Lopes64150208387http://lattes.cnpq.br/8338169517440092Francisco SuetÃnio Bastos Mota02494329353Marcos Erick Rodrigues da Silva87743914372http://buscatextual.cnpq.br/buscatextual/visualizacv.jsp?id=K4742890P766362768353http://lattes.cnpq.br/2625305131107589Francisca LÃvia de Oliveira MachadoUniversidade Federal do CearÃPrograma de PÃs-GraduaÃÃo em Engenharia CivilUFCBRMicroalga DigestÃo anaerÃbia Saneamentomicroalgae anerobic digestion residual glycerol of biodiesel pretreatement.ENGENHARIA CIVILMicroalgae, microscopic life forms with photosynthetic capacity, produce oxygen thanks to light energy. Due to this capacity, microalgae are used for sewage treatment in stabilization ponds, however, this activity generates a large amount of microalgal biomass. In view of this excess of biomass production and its disposal in water bodies produces unpleasant effects, it has been evaluated the re-use of this biomass as a substrate for methane production in anaerobic digestion. Since microalgae have a rigid cell wall, the application of microalgae hydrolysis tests was necessary in order to improve its biodegradability. Heat pretreatment for 30 minutes at 120ÂC and 1 kgf/cm2 resulted in the best pretreatment applied. In order to improve C/N ratio, residual glycerol coming from biodiesel production was used to perform co-digestion with microalgae. Residual glycerol coming from biodiesel production (1Kg of glycerol per 10 Kg of biodiesel generated) is an impure residue which is also produced at large scale as a byproduct from the trans-esterification of fats and oils. In fact, the presence of impurities limits its applications. In this study, different COD/N ratios of 20 (phase 2), 40 (phase 3) and 70 (phase 4) were tested and the organic loading rate (OLR) applied ranged from 0,06 to 0,75 kg/m3.d. In the phase 1 only microalgae was used on the influent. Two modified UASB reactors were used. One of them was fed with pretreated microalgae, while the other one was fed with non-pretreated microalgae. Both of them were operated in co-digestion with glycerol. COD removal efficiencies ranged between 40% and 90%. Biogas produced presented values of 73% and 84% for each bioreactor treating pretreated and non-pretreated microalgae, respectively. Neither nitrogen nor ammonia and total and volatile suspended solids was significantly removed. Moreover, microalgae were the sole source of macro and micro-nutrients in this work. Sodium bicarbonate was used as a buffer during the phase 4, since pH fall down enough to harm the anaerobic digestion process at the beginning of phase 4. Based on the maintenance of adequate VFA/Alk ratios, both reactors presented a stable operation, specially the reactors treating pre-treated microalgae. Instability periods were mainly observed in some operation phases in the reactor without pretreatment. Specific methanogenic activity tests were carried out in order to evaluate the quality of the inoculum in terms of activity and methane production. Methane production presented a mean value of 0,26 g DQO-CH4/g SSV.d.As microalgas, seres microscÃpicos com capacidade fotossintÃtica, produzem oxigÃnio na presenÃa de energia luminosa. Devido a isso as microalgas sÃo utilizadas para tratamento de esgotos em lagoas de estabilizaÃÃo, porÃm essa atividade gera uma grande quantidade de biomassa algal. Tendo em vista a produÃÃo dessa biomassa e sua destinaÃÃo em corpos hÃdricos provocando efeitos desagradÃveis, buscou-se avaliar a reutilizaÃÃo dessa biomassa como substrato para produÃÃo de metano a partir da digestÃo anaerÃbia. Devido à presenÃa de uma parede celular rÃgida, verificou-se a necessidade da aplicaÃÃo de testes de hidrÃlise para as microalgas com a finalidade de melhorar sua biodegradabilidade, sendo observado o melhor prÃ-tratamento aplicado, o tÃrmico por 30 minutos a 120ÂC e 1 kgf/cm2. Para melhorar a relaÃÃo C/N, utilizou-se o glicerol residual do biodiesel para realizaÃÃo de co-digestÃo com microalgas. O glicerol residual do biodiesel (1 kg de glicerol para cada 10 kg de biodiesel produzido), alÃm de ser um resÃduo impuro, à tambÃm produzido em grande escala como subproduto da transesterificaÃÃo de Ãleos e gorduras e sem muitas aplicaÃÃes devido exatamente a presenÃa de impurezas. Foram testadas relaÃÃes DQO/N de 20 (fase 2), 40 (fase 3) e 70 (fase 4), alÃm da relaÃÃo apenas das microalgas (fase 1), sendo as COV aplicadas, variando de 0,06 a 0,75 kg/m3.d. Foram utilizados dois reatores semelhantes ao UASB (UASB modificado), nos quais continham microalgas brutas e prÃ-tratadas, ambos em co-digestÃo com o glicerol. As remoÃÃes de DQO variaram de 40 a 90%. O biogÃs produzido teve rendimentos de atà 73% para o reator degradando microalgas prÃ-tratadas e 84% para o reator degradando microalgas brutas. NÃo houve remoÃÃes significativas de amÃnia e sÃlidos suspensos totais e volÃteis, tambÃm nÃo foram utilizados macro e micronutrientes, sendo esses nutrientes fornecidos apenas pelas microalgas. O bicarbonato de sÃdio como tampÃo foi utilizado apenas na Ãltima fase (fase 4), devido a queda do pH para uma faixa nÃo aceitÃvel para digestÃo anaerÃbia, no inÃcio dessa fase. As condiÃÃes de estabilidade foram mantidas, baseadas na relaÃÃo AGV/Alc, que se manteve em faixas aceitÃveis, principalmente para o reator operando microalgas prÃ-tratadas, sendo observado valores indicativos de instabilidade em algumas fases no reator sem prÃ-tratamento. Foi realizado teste de atividade metanogÃnica especÃfica para avaliar o lodo de inÃculo quanto a atividade e produÃÃo de metano, obtendo-se valor mÃdio de 0,26 g DQO-CH4/g SSV.d.CoordenaÃÃo de AperfeiÃoamento de NÃvel Superiorhttp://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=8714application/pdfinfo:eu-repo/semantics/openAccessporreponame:Biblioteca Digital de Teses e Dissertações da UFCinstname:Universidade Federal do Cearáinstacron:UFC2019-01-21T11:21:48Zmail@mail.com - |
dc.title.en.fl_str_mv |
Co-anaerobic digestion of microalgae and glycerol from biodiesel residual |
dc.title.alternative.pt.fl_str_mv |
Co-digestÃo anaerÃbia de microalgas e de glicerol residual do biodiesel |
title |
Co-anaerobic digestion of microalgae and glycerol from biodiesel residual |
spellingShingle |
Co-anaerobic digestion of microalgae and glycerol from biodiesel residual Francisca LÃvia de Oliveira Machado Microalga DigestÃo anaerÃbia Saneamento microalgae anerobic digestion residual glycerol of biodiesel pretreatement. ENGENHARIA CIVIL |
title_short |
Co-anaerobic digestion of microalgae and glycerol from biodiesel residual |
title_full |
Co-anaerobic digestion of microalgae and glycerol from biodiesel residual |
title_fullStr |
Co-anaerobic digestion of microalgae and glycerol from biodiesel residual |
title_full_unstemmed |
Co-anaerobic digestion of microalgae and glycerol from biodiesel residual |
title_sort |
Co-anaerobic digestion of microalgae and glycerol from biodiesel residual |
author |
Francisca LÃvia de Oliveira Machado |
author_facet |
Francisca LÃvia de Oliveira Machado |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Ronaldo Stefanutti |
dc.contributor.advisor1ID.fl_str_mv |
02660005842 |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/2381599257044388 |
dc.contributor.advisor-co1.fl_str_mv |
Alexandre Colzi Lopes |
dc.contributor.advisor-co1ID.fl_str_mv |
64150208387 |
dc.contributor.advisor-co1Lattes.fl_str_mv |
http://lattes.cnpq.br/8338169517440092 |
dc.contributor.referee1.fl_str_mv |
Francisco SuetÃnio Bastos Mota |
dc.contributor.referee1ID.fl_str_mv |
02494329353 |
dc.contributor.referee2.fl_str_mv |
Marcos Erick Rodrigues da Silva |
dc.contributor.referee2ID.fl_str_mv |
87743914372 |
dc.contributor.referee2Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.jsp?id=K4742890P7 |
dc.contributor.authorID.fl_str_mv |
66362768353 |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/2625305131107589 |
dc.contributor.author.fl_str_mv |
Francisca LÃvia de Oliveira Machado |
contributor_str_mv |
Ronaldo Stefanutti Alexandre Colzi Lopes Francisco SuetÃnio Bastos Mota Marcos Erick Rodrigues da Silva |
dc.subject.por.fl_str_mv |
Microalga DigestÃo anaerÃbia Saneamento |
topic |
Microalga DigestÃo anaerÃbia Saneamento microalgae anerobic digestion residual glycerol of biodiesel pretreatement. ENGENHARIA CIVIL |
dc.subject.eng.fl_str_mv |
microalgae anerobic digestion residual glycerol of biodiesel pretreatement. |
dc.subject.cnpq.fl_str_mv |
ENGENHARIA CIVIL |
dc.description.sponsorship.fl_txt_mv |
CoordenaÃÃo de AperfeiÃoamento de NÃvel Superior |
dc.description.abstract.por.fl_txt_mv |
Microalgae, microscopic life forms with photosynthetic capacity, produce oxygen thanks to light energy. Due to this capacity, microalgae are used for sewage treatment in stabilization ponds, however, this activity generates a large amount of microalgal biomass. In view of this excess of biomass production and its disposal in water bodies produces unpleasant effects, it has been evaluated the re-use of this biomass as a substrate for methane production in anaerobic digestion. Since microalgae have a rigid cell wall, the application of microalgae hydrolysis tests was necessary in order to improve its biodegradability. Heat pretreatment for 30 minutes at 120ÂC and 1 kgf/cm2 resulted in the best pretreatment applied. In order to improve C/N ratio, residual glycerol coming from biodiesel production was used to perform co-digestion with microalgae. Residual glycerol coming from biodiesel production (1Kg of glycerol per 10 Kg of biodiesel generated) is an impure residue which is also produced at large scale as a byproduct from the trans-esterification of fats and oils. In fact, the presence of impurities limits its applications. In this study, different COD/N ratios of 20 (phase 2), 40 (phase 3) and 70 (phase 4) were tested and the organic loading rate (OLR) applied ranged from 0,06 to 0,75 kg/m3.d. In the phase 1 only microalgae was used on the influent. Two modified UASB reactors were used. One of them was fed with pretreated microalgae, while the other one was fed with non-pretreated microalgae. Both of them were operated in co-digestion with glycerol. COD removal efficiencies ranged between 40% and 90%. Biogas produced presented values of 73% and 84% for each bioreactor treating pretreated and non-pretreated microalgae, respectively. Neither nitrogen nor ammonia and total and volatile suspended solids was significantly removed. Moreover, microalgae were the sole source of macro and micro-nutrients in this work. Sodium bicarbonate was used as a buffer during the phase 4, since pH fall down enough to harm the anaerobic digestion process at the beginning of phase 4. Based on the maintenance of adequate VFA/Alk ratios, both reactors presented a stable operation, specially the reactors treating pre-treated microalgae. Instability periods were mainly observed in some operation phases in the reactor without pretreatment. Specific methanogenic activity tests were carried out in order to evaluate the quality of the inoculum in terms of activity and methane production. Methane production presented a mean value of 0,26 g DQO-CH4/g SSV.d. As microalgas, seres microscÃpicos com capacidade fotossintÃtica, produzem oxigÃnio na presenÃa de energia luminosa. Devido a isso as microalgas sÃo utilizadas para tratamento de esgotos em lagoas de estabilizaÃÃo, porÃm essa atividade gera uma grande quantidade de biomassa algal. Tendo em vista a produÃÃo dessa biomassa e sua destinaÃÃo em corpos hÃdricos provocando efeitos desagradÃveis, buscou-se avaliar a reutilizaÃÃo dessa biomassa como substrato para produÃÃo de metano a partir da digestÃo anaerÃbia. Devido à presenÃa de uma parede celular rÃgida, verificou-se a necessidade da aplicaÃÃo de testes de hidrÃlise para as microalgas com a finalidade de melhorar sua biodegradabilidade, sendo observado o melhor prÃ-tratamento aplicado, o tÃrmico por 30 minutos a 120ÂC e 1 kgf/cm2. Para melhorar a relaÃÃo C/N, utilizou-se o glicerol residual do biodiesel para realizaÃÃo de co-digestÃo com microalgas. O glicerol residual do biodiesel (1 kg de glicerol para cada 10 kg de biodiesel produzido), alÃm de ser um resÃduo impuro, à tambÃm produzido em grande escala como subproduto da transesterificaÃÃo de Ãleos e gorduras e sem muitas aplicaÃÃes devido exatamente a presenÃa de impurezas. Foram testadas relaÃÃes DQO/N de 20 (fase 2), 40 (fase 3) e 70 (fase 4), alÃm da relaÃÃo apenas das microalgas (fase 1), sendo as COV aplicadas, variando de 0,06 a 0,75 kg/m3.d. Foram utilizados dois reatores semelhantes ao UASB (UASB modificado), nos quais continham microalgas brutas e prÃ-tratadas, ambos em co-digestÃo com o glicerol. As remoÃÃes de DQO variaram de 40 a 90%. O biogÃs produzido teve rendimentos de atà 73% para o reator degradando microalgas prÃ-tratadas e 84% para o reator degradando microalgas brutas. NÃo houve remoÃÃes significativas de amÃnia e sÃlidos suspensos totais e volÃteis, tambÃm nÃo foram utilizados macro e micronutrientes, sendo esses nutrientes fornecidos apenas pelas microalgas. O bicarbonato de sÃdio como tampÃo foi utilizado apenas na Ãltima fase (fase 4), devido a queda do pH para uma faixa nÃo aceitÃvel para digestÃo anaerÃbia, no inÃcio dessa fase. As condiÃÃes de estabilidade foram mantidas, baseadas na relaÃÃo AGV/Alc, que se manteve em faixas aceitÃveis, principalmente para o reator operando microalgas prÃ-tratadas, sendo observado valores indicativos de instabilidade em algumas fases no reator sem prÃ-tratamento. Foi realizado teste de atividade metanogÃnica especÃfica para avaliar o lodo de inÃculo quanto a atividade e produÃÃo de metano, obtendo-se valor mÃdio de 0,26 g DQO-CH4/g SSV.d. |
description |
Microalgae, microscopic life forms with photosynthetic capacity, produce oxygen thanks to light energy. Due to this capacity, microalgae are used for sewage treatment in stabilization ponds, however, this activity generates a large amount of microalgal biomass. In view of this excess of biomass production and its disposal in water bodies produces unpleasant effects, it has been evaluated the re-use of this biomass as a substrate for methane production in anaerobic digestion. Since microalgae have a rigid cell wall, the application of microalgae hydrolysis tests was necessary in order to improve its biodegradability. Heat pretreatment for 30 minutes at 120ÂC and 1 kgf/cm2 resulted in the best pretreatment applied. In order to improve C/N ratio, residual glycerol coming from biodiesel production was used to perform co-digestion with microalgae. Residual glycerol coming from biodiesel production (1Kg of glycerol per 10 Kg of biodiesel generated) is an impure residue which is also produced at large scale as a byproduct from the trans-esterification of fats and oils. In fact, the presence of impurities limits its applications. In this study, different COD/N ratios of 20 (phase 2), 40 (phase 3) and 70 (phase 4) were tested and the organic loading rate (OLR) applied ranged from 0,06 to 0,75 kg/m3.d. In the phase 1 only microalgae was used on the influent. Two modified UASB reactors were used. One of them was fed with pretreated microalgae, while the other one was fed with non-pretreated microalgae. Both of them were operated in co-digestion with glycerol. COD removal efficiencies ranged between 40% and 90%. Biogas produced presented values of 73% and 84% for each bioreactor treating pretreated and non-pretreated microalgae, respectively. Neither nitrogen nor ammonia and total and volatile suspended solids was significantly removed. Moreover, microalgae were the sole source of macro and micro-nutrients in this work. Sodium bicarbonate was used as a buffer during the phase 4, since pH fall down enough to harm the anaerobic digestion process at the beginning of phase 4. Based on the maintenance of adequate VFA/Alk ratios, both reactors presented a stable operation, specially the reactors treating pre-treated microalgae. Instability periods were mainly observed in some operation phases in the reactor without pretreatment. Specific methanogenic activity tests were carried out in order to evaluate the quality of the inoculum in terms of activity and methane production. Methane production presented a mean value of 0,26 g DQO-CH4/g SSV.d. |
publishDate |
2012 |
dc.date.issued.fl_str_mv |
2012-06-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
status_str |
publishedVersion |
format |
masterThesis |
dc.identifier.uri.fl_str_mv |
http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=8714 |
url |
http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=8714 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal do Cearà |
dc.publisher.program.fl_str_mv |
Programa de PÃs-GraduaÃÃo em Engenharia Civil |
dc.publisher.initials.fl_str_mv |
UFC |
dc.publisher.country.fl_str_mv |
BR |
publisher.none.fl_str_mv |
Universidade Federal do Cearà |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFC instname:Universidade Federal do Ceará instacron:UFC |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFC |
collection |
Biblioteca Digital de Teses e Dissertações da UFC |
instname_str |
Universidade Federal do Ceará |
instacron_str |
UFC |
institution |
UFC |
repository.name.fl_str_mv |
-
|
repository.mail.fl_str_mv |
mail@mail.com |
_version_ |
1643295166097784832 |