Nitride semiconductors as carrier-selective contacts for silicon heterojunction solar cells

Detalhes bibliográficos
Autor(a) principal: FÉBBA, Davi Marcelo
Data de Publicação: 2021
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da UNIFEI (RIUNIFEI)
Texto Completo: https://repositorio.unifei.edu.br/jspui/handle/123456789/2770
Resumo: Este trabalho apresenta a caracterização elétrica de camadas de ZnSnxGe1-xN2 (ZTGN) (10% < x < 90%) depositadas em substrato de vidro por sputtering combinatório e avalia o desempenho de células solares de heterojunção de silício (SHJ) que apresentam essas camadas como contatos elétron-seletivos. Bandgap, condutividade e energia de ati vação variaram significantemente entre amostras ricas em Sn e Ge. Quando tais camadas foram aplicadas como contatos elétron-seletivos em células solares, os dispositivos apre sentaram baixo desempenho, com resultados surpreendentemente semelhantes apesar de mudanças nas propriedades do material. A partir de análises e modelagem das caracterís ticas corrente-tensão de várias estruturas de células solares, com auxílio de um algoritmo de Evolução Diferencial auto adaptativo, mostramos que a função trabalho do contato elétron-seletivo está em torno de 4.35 eV para todas as composições investigadas de Sn e Ge, o que é muito alto para formar um excelente contato. Através da comparação de diferentes arquiteturas de células solares, identificamos ainda que camadas ricas em Ge impõem uma barreira adicional à extração de elétrons, independentemente de sua baixa seletividade, devido a baixos valores de condutividade. Após a identificação desses mecan ismos de perdas, MgSnN2 (MTN) foi considerado como um bom candidato, já que apre senta bandgap adequado e alta concentração de elétrons para uma composição de 50% Mg/(Mg+Sn) (at.%). Desse modo, fabricamos camadas de MTN através de sputtering combinatório, sem aquecimento do substrato e à 200 °C, obtendo amostras de MgxSn1-xN2 (43% < x < 55%), com bandgap em torno de 2 eV, exibindo condutividade e energia de ativação que decrescem em amostras ricas em Mg. Características JV similares àque las observadas para ZTGN foram obtidas quando MTN foi empregado como camada elétron-seletiva, mas com desempenho ligeiramente superior. As propriedades limitantes foram as mesmas, com função trabalho estimada em 4.16 eV, aumentando para 4.3 eV para amostras fabricadas à 200 °C. Amostras ricas em Sn exibiram ainda alta afinidade eletrônica e aquelas ricas em Mg resultaram em curvas com severo perfil em “s” devido à baixa dopagem, como foi o caso de amostras de ZTGN ricas em Ge. Portanto, a dopagem desses materiais com elementos extrínsecos aparenta ser a abordagem mais relevante para a construção de dispositivos eficientes com contatos formados com camadas de ZTGN ou MTN.
id UFEI_1ddc5970da6a9aa1ac143768fb17be17
oai_identifier_str oai:repositorio.unifei.edu.br:123456789/2770
network_acronym_str UFEI
network_name_str Repositório Institucional da UNIFEI (RIUNIFEI)
repository_id_str 7044
spelling 2021-12-092021-12-162021-12-16T11:07:17Z2021-12-16T11:07:17Zhttps://repositorio.unifei.edu.br/jspui/handle/123456789/2770Este trabalho apresenta a caracterização elétrica de camadas de ZnSnxGe1-xN2 (ZTGN) (10% < x < 90%) depositadas em substrato de vidro por sputtering combinatório e avalia o desempenho de células solares de heterojunção de silício (SHJ) que apresentam essas camadas como contatos elétron-seletivos. Bandgap, condutividade e energia de ati vação variaram significantemente entre amostras ricas em Sn e Ge. Quando tais camadas foram aplicadas como contatos elétron-seletivos em células solares, os dispositivos apre sentaram baixo desempenho, com resultados surpreendentemente semelhantes apesar de mudanças nas propriedades do material. A partir de análises e modelagem das caracterís ticas corrente-tensão de várias estruturas de células solares, com auxílio de um algoritmo de Evolução Diferencial auto adaptativo, mostramos que a função trabalho do contato elétron-seletivo está em torno de 4.35 eV para todas as composições investigadas de Sn e Ge, o que é muito alto para formar um excelente contato. Através da comparação de diferentes arquiteturas de células solares, identificamos ainda que camadas ricas em Ge impõem uma barreira adicional à extração de elétrons, independentemente de sua baixa seletividade, devido a baixos valores de condutividade. Após a identificação desses mecan ismos de perdas, MgSnN2 (MTN) foi considerado como um bom candidato, já que apre senta bandgap adequado e alta concentração de elétrons para uma composição de 50% Mg/(Mg+Sn) (at.%). Desse modo, fabricamos camadas de MTN através de sputtering combinatório, sem aquecimento do substrato e à 200 °C, obtendo amostras de MgxSn1-xN2 (43% < x < 55%), com bandgap em torno de 2 eV, exibindo condutividade e energia de ativação que decrescem em amostras ricas em Mg. Características JV similares àque las observadas para ZTGN foram obtidas quando MTN foi empregado como camada elétron-seletiva, mas com desempenho ligeiramente superior. As propriedades limitantes foram as mesmas, com função trabalho estimada em 4.16 eV, aumentando para 4.3 eV para amostras fabricadas à 200 °C. Amostras ricas em Sn exibiram ainda alta afinidade eletrônica e aquelas ricas em Mg resultaram em curvas com severo perfil em “s” devido à baixa dopagem, como foi o caso de amostras de ZTGN ricas em Ge. Portanto, a dopagem desses materiais com elementos extrínsecos aparenta ser a abordagem mais relevante para a construção de dispositivos eficientes com contatos formados com camadas de ZTGN ou MTN.This work initially reports the electrical characterization of ZnSnxGe1-xN2 (ZTGN) layers (10% < < 90%) deposited on glass by combinatorial sputtering and further assesses the performance of silicon heterojunction (SHJ) solar cells featuring them as electron-selective contacts. Bandgap, dark conductivity, and the activation energy of the latter were found to significantly change between Sn and Ge-rich samples. When applying ZTGN layers as electron-selective contacts for SHJ solar cells, poor solar-cell performance was observed, with surprisingly similar results despite changes in material properties. From analysis and modelling of the current-voltage characteristics of several device structures, through a self-adaptive Differential Evolution algorithm, we show that the work function of the electron-selective contact lies around 4.35 eV for all investigated Sn and Ge contents, which is too high to form an excellent electron-selective contact. By comparing differ ent solar-cell architectures, we could further identify that the Ge-rich layer imposes an additional barrier to electron extraction, independently of its poor selectivity, due to its low conductivity. After having identified these loss mechanisms, MgSnN2 (MTN) was envisioned as a good candidate, due to its high electron concentration and bandgap at 50% Mg/(Mg+Sn) (at.%). Thus, we fabricated MTN layers also through a combinatorial sputtering approach, with no substrate heating and at 200 °C, resulting in MgxSn1-xN2 (43% < < 55%) samples, with bandgap around 2 eV, showing dark conductivity and activation energy that decreased towards Mg-rich samples. When applied to SHJ solar cells, JV characteristics similar to that when ZTGN was studied were obtained, and per formance was slightly better. The limiting properties were also of the same kind, with an estimated work function around 4.16 eV, shifting to 4.3 eV for samples grown at 200 °C, and Sn-rich samples showing a too high electron affinity. Mg-rich samples, as Ge-rich ones, resulted in strong s-shapes due to poor doping. Thus, doping these compounds with extrinsic elements appears as the most relevant approach to build efficient devices with a ZTGN or MTN contact layer.engUniversidade Federal de ItajubáPrograma de Pós-Graduação: Doutorado - Engenharia ElétricaUNIFEIBrasilIESTI - Instituto de Engenharia de Sistemas e Tecnologia da InformaçãoCNPQ::ENGENHARIAS::ENGENHARIA ELÉTRICA::SISTEMAS ELÉTRICOS DE POTÊNCIAZnSnN2ZnGeN2MgSnN2Contato seletivoHeterojunção de silícioNitretosCélulas solaresEstrutura de bandaMeta-heurísticasExtração de parâmetrosEvolução diferencialNitride semiconductors as carrier-selective contacts for silicon heterojunction solar cellsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisBORTONI, Edson da Costahttp://lattes.cnpq.br/0936619055402651RUBINGER, Rero Marqueshttp://lattes.cnpq.br/1123598835707364http://lattes.cnpq.br/1045376122168899FÉBBA, Davi Marceloinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNIFEI (RIUNIFEI)instname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEILICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.unifei.edu.br/jspui/bitstream/123456789/2770/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINALTese_2021055.pdfTese_2021055.pdfapplication/pdf5003028https://repositorio.unifei.edu.br/jspui/bitstream/123456789/2770/1/Tese_2021055.pdf6a0400749a730dc35bcb807b8f307ddcMD51123456789/27702021-12-16 08:09:05.691oai:repositorio.unifei.edu.br:123456789/2770Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://repositorio.unifei.edu.br/oai/requestrepositorio@unifei.edu.br || geraldocarlos@unifei.edu.bropendoar:70442021-12-16T11:09:05Repositório Institucional da UNIFEI (RIUNIFEI) - Universidade Federal de Itajubá (UNIFEI)false
dc.title.pt_BR.fl_str_mv Nitride semiconductors as carrier-selective contacts for silicon heterojunction solar cells
title Nitride semiconductors as carrier-selective contacts for silicon heterojunction solar cells
spellingShingle Nitride semiconductors as carrier-selective contacts for silicon heterojunction solar cells
FÉBBA, Davi Marcelo
CNPQ::ENGENHARIAS::ENGENHARIA ELÉTRICA::SISTEMAS ELÉTRICOS DE POTÊNCIA
ZnSnN2
ZnGeN2
MgSnN2
Contato seletivo
Heterojunção de silício
Nitretos
Células solares
Estrutura de banda
Meta-heurísticas
Extração de parâmetros
Evolução diferencial
title_short Nitride semiconductors as carrier-selective contacts for silicon heterojunction solar cells
title_full Nitride semiconductors as carrier-selective contacts for silicon heterojunction solar cells
title_fullStr Nitride semiconductors as carrier-selective contacts for silicon heterojunction solar cells
title_full_unstemmed Nitride semiconductors as carrier-selective contacts for silicon heterojunction solar cells
title_sort Nitride semiconductors as carrier-selective contacts for silicon heterojunction solar cells
author FÉBBA, Davi Marcelo
author_facet FÉBBA, Davi Marcelo
author_role author
dc.contributor.advisor1.fl_str_mv BORTONI, Edson da Costa
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/0936619055402651
dc.contributor.advisor-co1.fl_str_mv RUBINGER, Rero Marques
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/1123598835707364
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/1045376122168899
dc.contributor.author.fl_str_mv FÉBBA, Davi Marcelo
contributor_str_mv BORTONI, Edson da Costa
RUBINGER, Rero Marques
dc.subject.cnpq.fl_str_mv CNPQ::ENGENHARIAS::ENGENHARIA ELÉTRICA::SISTEMAS ELÉTRICOS DE POTÊNCIA
topic CNPQ::ENGENHARIAS::ENGENHARIA ELÉTRICA::SISTEMAS ELÉTRICOS DE POTÊNCIA
ZnSnN2
ZnGeN2
MgSnN2
Contato seletivo
Heterojunção de silício
Nitretos
Células solares
Estrutura de banda
Meta-heurísticas
Extração de parâmetros
Evolução diferencial
dc.subject.por.fl_str_mv ZnSnN2
ZnGeN2
MgSnN2
Contato seletivo
Heterojunção de silício
Nitretos
Células solares
Estrutura de banda
Meta-heurísticas
Extração de parâmetros
Evolução diferencial
description Este trabalho apresenta a caracterização elétrica de camadas de ZnSnxGe1-xN2 (ZTGN) (10% < x < 90%) depositadas em substrato de vidro por sputtering combinatório e avalia o desempenho de células solares de heterojunção de silício (SHJ) que apresentam essas camadas como contatos elétron-seletivos. Bandgap, condutividade e energia de ati vação variaram significantemente entre amostras ricas em Sn e Ge. Quando tais camadas foram aplicadas como contatos elétron-seletivos em células solares, os dispositivos apre sentaram baixo desempenho, com resultados surpreendentemente semelhantes apesar de mudanças nas propriedades do material. A partir de análises e modelagem das caracterís ticas corrente-tensão de várias estruturas de células solares, com auxílio de um algoritmo de Evolução Diferencial auto adaptativo, mostramos que a função trabalho do contato elétron-seletivo está em torno de 4.35 eV para todas as composições investigadas de Sn e Ge, o que é muito alto para formar um excelente contato. Através da comparação de diferentes arquiteturas de células solares, identificamos ainda que camadas ricas em Ge impõem uma barreira adicional à extração de elétrons, independentemente de sua baixa seletividade, devido a baixos valores de condutividade. Após a identificação desses mecan ismos de perdas, MgSnN2 (MTN) foi considerado como um bom candidato, já que apre senta bandgap adequado e alta concentração de elétrons para uma composição de 50% Mg/(Mg+Sn) (at.%). Desse modo, fabricamos camadas de MTN através de sputtering combinatório, sem aquecimento do substrato e à 200 °C, obtendo amostras de MgxSn1-xN2 (43% < x < 55%), com bandgap em torno de 2 eV, exibindo condutividade e energia de ativação que decrescem em amostras ricas em Mg. Características JV similares àque las observadas para ZTGN foram obtidas quando MTN foi empregado como camada elétron-seletiva, mas com desempenho ligeiramente superior. As propriedades limitantes foram as mesmas, com função trabalho estimada em 4.16 eV, aumentando para 4.3 eV para amostras fabricadas à 200 °C. Amostras ricas em Sn exibiram ainda alta afinidade eletrônica e aquelas ricas em Mg resultaram em curvas com severo perfil em “s” devido à baixa dopagem, como foi o caso de amostras de ZTGN ricas em Ge. Portanto, a dopagem desses materiais com elementos extrínsecos aparenta ser a abordagem mais relevante para a construção de dispositivos eficientes com contatos formados com camadas de ZTGN ou MTN.
publishDate 2021
dc.date.issued.fl_str_mv 2021-12-09
dc.date.available.fl_str_mv 2021-12-16
2021-12-16T11:07:17Z
dc.date.accessioned.fl_str_mv 2021-12-16T11:07:17Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.unifei.edu.br/jspui/handle/123456789/2770
url https://repositorio.unifei.edu.br/jspui/handle/123456789/2770
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Itajubá
dc.publisher.program.fl_str_mv Programa de Pós-Graduação: Doutorado - Engenharia Elétrica
dc.publisher.initials.fl_str_mv UNIFEI
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv IESTI - Instituto de Engenharia de Sistemas e Tecnologia da Informação
publisher.none.fl_str_mv Universidade Federal de Itajubá
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNIFEI (RIUNIFEI)
instname:Universidade Federal de Itajubá (UNIFEI)
instacron:UNIFEI
instname_str Universidade Federal de Itajubá (UNIFEI)
instacron_str UNIFEI
institution UNIFEI
reponame_str Repositório Institucional da UNIFEI (RIUNIFEI)
collection Repositório Institucional da UNIFEI (RIUNIFEI)
bitstream.url.fl_str_mv https://repositorio.unifei.edu.br/jspui/bitstream/123456789/2770/2/license.txt
https://repositorio.unifei.edu.br/jspui/bitstream/123456789/2770/1/Tese_2021055.pdf
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
6a0400749a730dc35bcb807b8f307ddc
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UNIFEI (RIUNIFEI) - Universidade Federal de Itajubá (UNIFEI)
repository.mail.fl_str_mv repositorio@unifei.edu.br || geraldocarlos@unifei.edu.br
_version_ 1801863237146247168