Identificação de regiões do cérebro para classificação de severidade do TEA utilizando Machine Learning e fMRI
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UNIFEI (RIUNIFEI) |
Texto Completo: | https://repositorio.unifei.edu.br/jspui/handle/123456789/2350 |
Resumo: | O Transtorno do Espectro Autista (TEA) é uma condição neurológica vitalícia relacionada à idade e ao sexo, caracterizada principalmente por disparidades sociais. A prevalência atual do TEA indica que uma em cada 59 crianças estão dentro do espectro. O Autism Diagnostic Observation Schedule, Second Edition (ADOS-2) é um processo de diagnóstico que classifica o TEA de acordo com a gravidade do transtorno. ADOS-2 classifica sintomas mais graves como casos de “autismo” e os que manifestam sintomas mais leves como casos de “TEA não autista” (TEA-NA). Muitos artigos objetivam criar algoritmos para diagnosticar TEA por meio de aprendizado de máquina (do inglês Machine Learning - ML) e imagens de ressonância magnética funcional (do Inglês Functional Magnetic Resonance Imaging - fMRI). Essas abordagens avaliam o fluxo de oxigênio no cérebro para classificar os indivíduos como TEA ou com desenvolvimento típico. No entanto, em geral, esses trabalhos não fornecem informações sobre a gravidade do transtorno. Esse trabalho tem como objetivo a identificação de regiões do cérebro com diferença funcional entre indivíduos TEA-NA e autistas, como possível biomarcador para a severidade das características TEA. Para isso, o trabalho utilizou dados de fMRI de 202 indivíduos, e suas respectivas pontuações ADOS-2 disponíveis no consórcio ABIDE para determinar a subclasse de TEA correta para cada um. Esses dados foram utilizados para alimentar um algoritmo de ML, de aprendizado supervisionado, o Support Vector Machine (SVC), de forma a selecionar as regiões com maior diferença funcional para os indivíduos da amostra. Os resultados corroboram a hipótese inicial de diferenças funcionais entre as subclasses de TEA, com algumas regiões do cérebro onde a diferença funcional foi suficiente para criar 74% de precisão na classificação. Este trabalho apresenta limitações quanto ao número total de amostras. No entanto, a abordagem mostra-se promissora para o diagnóstico de severidade do TEA. |
id |
UFEI_5b1aeaa3d3c0e8a31710fd64ae9546a1 |
---|---|
oai_identifier_str |
oai:repositorio.unifei.edu.br:123456789/2350 |
network_acronym_str |
UFEI |
network_name_str |
Repositório Institucional da UNIFEI (RIUNIFEI) |
repository_id_str |
7044 |
spelling |
2021-02-262021-03-222021-03-23T01:33:07Z2021-03-23T01:33:07Zhttps://repositorio.unifei.edu.br/jspui/handle/123456789/2350O Transtorno do Espectro Autista (TEA) é uma condição neurológica vitalícia relacionada à idade e ao sexo, caracterizada principalmente por disparidades sociais. A prevalência atual do TEA indica que uma em cada 59 crianças estão dentro do espectro. O Autism Diagnostic Observation Schedule, Second Edition (ADOS-2) é um processo de diagnóstico que classifica o TEA de acordo com a gravidade do transtorno. ADOS-2 classifica sintomas mais graves como casos de “autismo” e os que manifestam sintomas mais leves como casos de “TEA não autista” (TEA-NA). Muitos artigos objetivam criar algoritmos para diagnosticar TEA por meio de aprendizado de máquina (do inglês Machine Learning - ML) e imagens de ressonância magnética funcional (do Inglês Functional Magnetic Resonance Imaging - fMRI). Essas abordagens avaliam o fluxo de oxigênio no cérebro para classificar os indivíduos como TEA ou com desenvolvimento típico. No entanto, em geral, esses trabalhos não fornecem informações sobre a gravidade do transtorno. Esse trabalho tem como objetivo a identificação de regiões do cérebro com diferença funcional entre indivíduos TEA-NA e autistas, como possível biomarcador para a severidade das características TEA. Para isso, o trabalho utilizou dados de fMRI de 202 indivíduos, e suas respectivas pontuações ADOS-2 disponíveis no consórcio ABIDE para determinar a subclasse de TEA correta para cada um. Esses dados foram utilizados para alimentar um algoritmo de ML, de aprendizado supervisionado, o Support Vector Machine (SVC), de forma a selecionar as regiões com maior diferença funcional para os indivíduos da amostra. Os resultados corroboram a hipótese inicial de diferenças funcionais entre as subclasses de TEA, com algumas regiões do cérebro onde a diferença funcional foi suficiente para criar 74% de precisão na classificação. Este trabalho apresenta limitações quanto ao número total de amostras. No entanto, a abordagem mostra-se promissora para o diagnóstico de severidade do TEA.Autism Spectrum Disorder (ASD) is an age- and sex-related lifelong neurodevelopmental disorder characterized primarily by social impairments. Current ASD prevalence indicates that 1/59 children are diagnosed inside the spectrum. The Autism Diagnostic Observation Schedule, Second Edition (ADOS-2) classifies ASD according to the disorder severity. ADOS-2 classifies as ’autism’ cases that manifest more severe symptoms and as ’ASD non-autism’ cases that exhibit milder symptoms. Many papers aimed to create algorithms to diagnose ASD through Machine Learning (ML) and functional Magnetic Resonance Images (fMRI). Such approaches evaluate the oxygen flow in the brain to classify the subjects as ASD or typical development. However, most of these works, do not provided information regarding the disorder severity. This paper aims to use ML and fMRI to classify the disorder severity, aim to find brain regions potentially related to the disorder severity. We used fMRI data of 202 subjects and their ADOS-2 scores available at the ABIDE consortium to determine the correct ASD sub-class for each one. Our results corroborate the initial hypothesis of functional differences within ASD, with some brain regions where the functional difference was enough to create classification accuracy of 74%. This paper has limitations regarding the total number of samples. However, it shows a promising approach to ASD diagnosis.Agência 1porUniversidade Federal de ItajubáPrograma de Pós-Graduação: Mestrado - Ciência e Tecnologia da ComputaçãoUNIFEIBrasilIESTI - Instituto de Engenharia de Sistemas e Tecnologia da InformaçãoCNPQ::CIÊNCIAS EXATAS E DA TERRA::CIÊNCIA DA COMPUTAÇÃOABIDETranstorno do espectro autistaClassificação de severidade do transtorno do espectro autistafMRIMachine LearningIdentificação de regiões do cérebro para classificação de severidade do TEA utilizando Machine Learning e fMRIinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisBASTOS, Guilherme Sousahttp://lattes.cnpq.br/1508015681115848http://lattes.cnpq.br/2620112695676766RODRIGUES, Igor DuarteRODRIGUES, Igor Duarte. Identificação de regiões do cérebro para classificação de severidade do TEA utilizando Machine Learning e fMRI. 2021. 66 f. Dissertação (Mestrado em Ciência e Tecnologia da Computação.) – Universidade Federal de Itajubá, Itajubá, 2021.info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNIFEI (RIUNIFEI)instname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIORIGINALDissertação_2021071.pdfDissertação_2021071.pdfapplication/pdf1910551https://repositorio.unifei.edu.br/jspui/bitstream/123456789/2350/3/Disserta%c3%a7%c3%a3o_2021071.pdfae45226005e9f04326146541b36acfcbMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.unifei.edu.br/jspui/bitstream/123456789/2350/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52123456789/23502022-11-29 07:52:40.872oai:repositorio.unifei.edu.br:123456789/2350Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://repositorio.unifei.edu.br/oai/requestrepositorio@unifei.edu.br || geraldocarlos@unifei.edu.bropendoar:70442022-11-29T10:52:40Repositório Institucional da UNIFEI (RIUNIFEI) - Universidade Federal de Itajubá (UNIFEI)false |
dc.title.pt_BR.fl_str_mv |
Identificação de regiões do cérebro para classificação de severidade do TEA utilizando Machine Learning e fMRI |
title |
Identificação de regiões do cérebro para classificação de severidade do TEA utilizando Machine Learning e fMRI |
spellingShingle |
Identificação de regiões do cérebro para classificação de severidade do TEA utilizando Machine Learning e fMRI RODRIGUES, Igor Duarte CNPQ::CIÊNCIAS EXATAS E DA TERRA::CIÊNCIA DA COMPUTAÇÃO ABIDE Transtorno do espectro autista Classificação de severidade do transtorno do espectro autista fMRI Machine Learning |
title_short |
Identificação de regiões do cérebro para classificação de severidade do TEA utilizando Machine Learning e fMRI |
title_full |
Identificação de regiões do cérebro para classificação de severidade do TEA utilizando Machine Learning e fMRI |
title_fullStr |
Identificação de regiões do cérebro para classificação de severidade do TEA utilizando Machine Learning e fMRI |
title_full_unstemmed |
Identificação de regiões do cérebro para classificação de severidade do TEA utilizando Machine Learning e fMRI |
title_sort |
Identificação de regiões do cérebro para classificação de severidade do TEA utilizando Machine Learning e fMRI |
author |
RODRIGUES, Igor Duarte |
author_facet |
RODRIGUES, Igor Duarte |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
BASTOS, Guilherme Sousa |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/1508015681115848 |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/2620112695676766 |
dc.contributor.author.fl_str_mv |
RODRIGUES, Igor Duarte |
contributor_str_mv |
BASTOS, Guilherme Sousa |
dc.subject.cnpq.fl_str_mv |
CNPQ::CIÊNCIAS EXATAS E DA TERRA::CIÊNCIA DA COMPUTAÇÃO |
topic |
CNPQ::CIÊNCIAS EXATAS E DA TERRA::CIÊNCIA DA COMPUTAÇÃO ABIDE Transtorno do espectro autista Classificação de severidade do transtorno do espectro autista fMRI Machine Learning |
dc.subject.por.fl_str_mv |
ABIDE Transtorno do espectro autista Classificação de severidade do transtorno do espectro autista fMRI Machine Learning |
description |
O Transtorno do Espectro Autista (TEA) é uma condição neurológica vitalícia relacionada à idade e ao sexo, caracterizada principalmente por disparidades sociais. A prevalência atual do TEA indica que uma em cada 59 crianças estão dentro do espectro. O Autism Diagnostic Observation Schedule, Second Edition (ADOS-2) é um processo de diagnóstico que classifica o TEA de acordo com a gravidade do transtorno. ADOS-2 classifica sintomas mais graves como casos de “autismo” e os que manifestam sintomas mais leves como casos de “TEA não autista” (TEA-NA). Muitos artigos objetivam criar algoritmos para diagnosticar TEA por meio de aprendizado de máquina (do inglês Machine Learning - ML) e imagens de ressonância magnética funcional (do Inglês Functional Magnetic Resonance Imaging - fMRI). Essas abordagens avaliam o fluxo de oxigênio no cérebro para classificar os indivíduos como TEA ou com desenvolvimento típico. No entanto, em geral, esses trabalhos não fornecem informações sobre a gravidade do transtorno. Esse trabalho tem como objetivo a identificação de regiões do cérebro com diferença funcional entre indivíduos TEA-NA e autistas, como possível biomarcador para a severidade das características TEA. Para isso, o trabalho utilizou dados de fMRI de 202 indivíduos, e suas respectivas pontuações ADOS-2 disponíveis no consórcio ABIDE para determinar a subclasse de TEA correta para cada um. Esses dados foram utilizados para alimentar um algoritmo de ML, de aprendizado supervisionado, o Support Vector Machine (SVC), de forma a selecionar as regiões com maior diferença funcional para os indivíduos da amostra. Os resultados corroboram a hipótese inicial de diferenças funcionais entre as subclasses de TEA, com algumas regiões do cérebro onde a diferença funcional foi suficiente para criar 74% de precisão na classificação. Este trabalho apresenta limitações quanto ao número total de amostras. No entanto, a abordagem mostra-se promissora para o diagnóstico de severidade do TEA. |
publishDate |
2021 |
dc.date.issued.fl_str_mv |
2021-02-26 |
dc.date.available.fl_str_mv |
2021-03-22 2021-03-23T01:33:07Z |
dc.date.accessioned.fl_str_mv |
2021-03-23T01:33:07Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.unifei.edu.br/jspui/handle/123456789/2350 |
url |
https://repositorio.unifei.edu.br/jspui/handle/123456789/2350 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.references.pt_BR.fl_str_mv |
RODRIGUES, Igor Duarte. Identificação de regiões do cérebro para classificação de severidade do TEA utilizando Machine Learning e fMRI. 2021. 66 f. Dissertação (Mestrado em Ciência e Tecnologia da Computação.) – Universidade Federal de Itajubá, Itajubá, 2021. |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Itajubá |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação: Mestrado - Ciência e Tecnologia da Computação |
dc.publisher.initials.fl_str_mv |
UNIFEI |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
IESTI - Instituto de Engenharia de Sistemas e Tecnologia da Informação |
publisher.none.fl_str_mv |
Universidade Federal de Itajubá |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UNIFEI (RIUNIFEI) instname:Universidade Federal de Itajubá (UNIFEI) instacron:UNIFEI |
instname_str |
Universidade Federal de Itajubá (UNIFEI) |
instacron_str |
UNIFEI |
institution |
UNIFEI |
reponame_str |
Repositório Institucional da UNIFEI (RIUNIFEI) |
collection |
Repositório Institucional da UNIFEI (RIUNIFEI) |
bitstream.url.fl_str_mv |
https://repositorio.unifei.edu.br/jspui/bitstream/123456789/2350/3/Disserta%c3%a7%c3%a3o_2021071.pdf https://repositorio.unifei.edu.br/jspui/bitstream/123456789/2350/2/license.txt |
bitstream.checksum.fl_str_mv |
ae45226005e9f04326146541b36acfcb 8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UNIFEI (RIUNIFEI) - Universidade Federal de Itajubá (UNIFEI) |
repository.mail.fl_str_mv |
repositorio@unifei.edu.br || geraldocarlos@unifei.edu.br |
_version_ |
1801863196384952320 |