Previsor neural de carga elétrica baseado em análise de multiresolução via wavelets e técnicas de reconstrução do espaço-fase

Detalhes bibliográficos
Autor(a) principal: REIS, Agnaldo José da Rocha
Data de Publicação: 2003
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UNIFEI (RIUNIFEI)
Texto Completo: https://repositorio.unifei.edu.br/jspui/handle/123456789/3764
Resumo: A importância da previsão de carga a curto prazo tem crescido ultimamente. Com a desregulamentação e a competição advinda desse processo, a previsão do preço de energia se transformou em uma atividade bastante lucrativa. A previsão das cargas das barras é essencial para alimentar métodos analíticos utilizados para determinar os preços de energia. A variabilidade e a não estacionariedade das cargas estão ficando cada vez piores devido à dinâmica dos preços de energia. Além disso, o número de cargas nodais a serem previstas não permite interações freqüentes com os especialistas em previsão de carga. Portanto, previsores de carga mais autônomos são necessários nesse novo cenário competitivo. Esta tese apresenta duas linhas de pesquisa diferentes. Na primeira delas, duas estratégias para a utilização da transformada wavelet na previsão de carga via redes neurais são apresentadas. A primeira estratégia é nova. Ela consiste na criação de um modelo de previsão de carga cujas entradas são baseadas na informação da série de carga original e na informação fornecida pelas subséries no domínio wavelet. Já na segunda estratégia, o comportamento futuro da carga é conseguido através da combinação de previsões independentes de cada subsérie no domínio wavelet. A segunda linha de pesquisa investiga a aplicabilidade de uma metodologia não linear baseada no método de coordenadas em atraso para a seleção das variáveis de entrada mais significativas para previsores neurais. Esse critério é comparado com um outro critério linear baseado na função de autocorrelação. Com a utilização das metodologias supraditas, objetiva-se o desenvolvimento de previsores de carga mais robustos. Para testá-las, dados horários reais de carga e temperatura de uma concessionária de energia elétrica norte-americana são utilizados.
id UFEI_6854407a8000c5154cdcbbcb97105296
oai_identifier_str oai:repositorio.unifei.edu.br:123456789/3764
network_acronym_str UFEI
network_name_str Repositório Institucional da UNIFEI (RIUNIFEI)
repository_id_str 7044
spelling 2003-11-112023-06-212023-06-21T11:35:31Z2023-06-21T11:35:31Zhttps://repositorio.unifei.edu.br/jspui/handle/123456789/3764A importância da previsão de carga a curto prazo tem crescido ultimamente. Com a desregulamentação e a competição advinda desse processo, a previsão do preço de energia se transformou em uma atividade bastante lucrativa. A previsão das cargas das barras é essencial para alimentar métodos analíticos utilizados para determinar os preços de energia. A variabilidade e a não estacionariedade das cargas estão ficando cada vez piores devido à dinâmica dos preços de energia. Além disso, o número de cargas nodais a serem previstas não permite interações freqüentes com os especialistas em previsão de carga. Portanto, previsores de carga mais autônomos são necessários nesse novo cenário competitivo. Esta tese apresenta duas linhas de pesquisa diferentes. Na primeira delas, duas estratégias para a utilização da transformada wavelet na previsão de carga via redes neurais são apresentadas. A primeira estratégia é nova. Ela consiste na criação de um modelo de previsão de carga cujas entradas são baseadas na informação da série de carga original e na informação fornecida pelas subséries no domínio wavelet. Já na segunda estratégia, o comportamento futuro da carga é conseguido através da combinação de previsões independentes de cada subsérie no domínio wavelet. A segunda linha de pesquisa investiga a aplicabilidade de uma metodologia não linear baseada no método de coordenadas em atraso para a seleção das variáveis de entrada mais significativas para previsores neurais. Esse critério é comparado com um outro critério linear baseado na função de autocorrelação. Com a utilização das metodologias supraditas, objetiva-se o desenvolvimento de previsores de carga mais robustos. Para testá-las, dados horários reais de carga e temperatura de uma concessionária de energia elétrica norte-americana são utilizados.The importance of short-term load forecasting has been increasing lately. With deregulation and competition, energy price forecasting has become a big business. Bus-load forecasting is essential to feed analytical methods utilized for determining energy prices. The variability and non-stationarity of loads are becoming worse due to the dynamics of energy prices. Besides, the number of nodal loads to be predicted does not allow frequent interactions with load forecasting experts. More autonomous load predictors are needed in the new competitive scenario. This thesis deals with two main research lines. In the first one, two different strategies for successfully embedding the Discrete Wavelet Transform into Artificial Neural Networksbased short-term load forecasting is presented. The first strategy is new. It consists of creating a model for load forecasting whose inputs are based on information from the original load sequence and from wavelet domain subseries, as well. The second alternative predicts the load’s future behavior by independently forecasting each subseries in the wavelet domain. The other research line evaluates the feasibility of a nonlinear criterion based on the method of delay coordinates for determining the best set of input variables for a neural forecaster. This criterion is fully compared to another linear criterion based on the autocorrelation function. The main goal of this work is to develop more robust load forecasting algorithms. Hourly load and temperature data for a North-American electric utility are used to test the proposed methodologies.porUniversidade Federal de ItajubáPrograma de Pós-Graduação: Doutorado - Engenharia ElétricaUNIFEIBrasilIESTI - Instituto de Engenharia de Sistemas e Tecnologia da InformaçãoCNPQ::ENGENHARIAS::ENGENHARIA ELÉTRICAPrevisão de cargaRedes neuraisReconstrução do espaço-faseTransformada waveletPrevisor neural de carga elétrica baseado em análise de multiresolução via wavelets e técnicas de reconstrução do espaço-faseinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisSILVA, Alexandre Pinto Alves dahttp://lattes.cnpq.br/2739279461946618http://lattes.cnpq.br/0080159809125998REIS, Agnaldo José da RochaREIS, Agnaldo José da Rocha. Previsor neural de carga elétrica baseado em análise de multiresolução via wavelets e técnicas de reconstrução do espaço-fase. 2003. 136 f. Tese (Doutorado em Engenharia Elétrica) – Universidade Federal de Itajubá, Itajubá, 2003.info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNIFEI (RIUNIFEI)instname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEILICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.unifei.edu.br/jspui/bitstream/123456789/3764/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINALTese_200331245.pdfTese_200331245.pdfapplication/pdf3119061https://repositorio.unifei.edu.br/jspui/bitstream/123456789/3764/1/Tese_200331245.pdf1ca030c81bdb6ea81a458d0a6847dd72MD51123456789/37642023-06-21 08:35:31.235oai:repositorio.unifei.edu.br:123456789/3764Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://repositorio.unifei.edu.br/oai/requestrepositorio@unifei.edu.br || geraldocarlos@unifei.edu.bropendoar:70442023-06-21T11:35:31Repositório Institucional da UNIFEI (RIUNIFEI) - Universidade Federal de Itajubá (UNIFEI)false
dc.title.pt_BR.fl_str_mv Previsor neural de carga elétrica baseado em análise de multiresolução via wavelets e técnicas de reconstrução do espaço-fase
title Previsor neural de carga elétrica baseado em análise de multiresolução via wavelets e técnicas de reconstrução do espaço-fase
spellingShingle Previsor neural de carga elétrica baseado em análise de multiresolução via wavelets e técnicas de reconstrução do espaço-fase
REIS, Agnaldo José da Rocha
CNPQ::ENGENHARIAS::ENGENHARIA ELÉTRICA
Previsão de carga
Redes neurais
Reconstrução do espaço-fase
Transformada wavelet
title_short Previsor neural de carga elétrica baseado em análise de multiresolução via wavelets e técnicas de reconstrução do espaço-fase
title_full Previsor neural de carga elétrica baseado em análise de multiresolução via wavelets e técnicas de reconstrução do espaço-fase
title_fullStr Previsor neural de carga elétrica baseado em análise de multiresolução via wavelets e técnicas de reconstrução do espaço-fase
title_full_unstemmed Previsor neural de carga elétrica baseado em análise de multiresolução via wavelets e técnicas de reconstrução do espaço-fase
title_sort Previsor neural de carga elétrica baseado em análise de multiresolução via wavelets e técnicas de reconstrução do espaço-fase
author REIS, Agnaldo José da Rocha
author_facet REIS, Agnaldo José da Rocha
author_role author
dc.contributor.advisor1.fl_str_mv SILVA, Alexandre Pinto Alves da
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/2739279461946618
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/0080159809125998
dc.contributor.author.fl_str_mv REIS, Agnaldo José da Rocha
contributor_str_mv SILVA, Alexandre Pinto Alves da
dc.subject.cnpq.fl_str_mv CNPQ::ENGENHARIAS::ENGENHARIA ELÉTRICA
topic CNPQ::ENGENHARIAS::ENGENHARIA ELÉTRICA
Previsão de carga
Redes neurais
Reconstrução do espaço-fase
Transformada wavelet
dc.subject.por.fl_str_mv Previsão de carga
Redes neurais
Reconstrução do espaço-fase
Transformada wavelet
description A importância da previsão de carga a curto prazo tem crescido ultimamente. Com a desregulamentação e a competição advinda desse processo, a previsão do preço de energia se transformou em uma atividade bastante lucrativa. A previsão das cargas das barras é essencial para alimentar métodos analíticos utilizados para determinar os preços de energia. A variabilidade e a não estacionariedade das cargas estão ficando cada vez piores devido à dinâmica dos preços de energia. Além disso, o número de cargas nodais a serem previstas não permite interações freqüentes com os especialistas em previsão de carga. Portanto, previsores de carga mais autônomos são necessários nesse novo cenário competitivo. Esta tese apresenta duas linhas de pesquisa diferentes. Na primeira delas, duas estratégias para a utilização da transformada wavelet na previsão de carga via redes neurais são apresentadas. A primeira estratégia é nova. Ela consiste na criação de um modelo de previsão de carga cujas entradas são baseadas na informação da série de carga original e na informação fornecida pelas subséries no domínio wavelet. Já na segunda estratégia, o comportamento futuro da carga é conseguido através da combinação de previsões independentes de cada subsérie no domínio wavelet. A segunda linha de pesquisa investiga a aplicabilidade de uma metodologia não linear baseada no método de coordenadas em atraso para a seleção das variáveis de entrada mais significativas para previsores neurais. Esse critério é comparado com um outro critério linear baseado na função de autocorrelação. Com a utilização das metodologias supraditas, objetiva-se o desenvolvimento de previsores de carga mais robustos. Para testá-las, dados horários reais de carga e temperatura de uma concessionária de energia elétrica norte-americana são utilizados.
publishDate 2003
dc.date.issued.fl_str_mv 2003-11-11
dc.date.available.fl_str_mv 2023-06-21
2023-06-21T11:35:31Z
dc.date.accessioned.fl_str_mv 2023-06-21T11:35:31Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.unifei.edu.br/jspui/handle/123456789/3764
url https://repositorio.unifei.edu.br/jspui/handle/123456789/3764
dc.language.iso.fl_str_mv por
language por
dc.relation.references.pt_BR.fl_str_mv REIS, Agnaldo José da Rocha. Previsor neural de carga elétrica baseado em análise de multiresolução via wavelets e técnicas de reconstrução do espaço-fase. 2003. 136 f. Tese (Doutorado em Engenharia Elétrica) – Universidade Federal de Itajubá, Itajubá, 2003.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Itajubá
dc.publisher.program.fl_str_mv Programa de Pós-Graduação: Doutorado - Engenharia Elétrica
dc.publisher.initials.fl_str_mv UNIFEI
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv IESTI - Instituto de Engenharia de Sistemas e Tecnologia da Informação
publisher.none.fl_str_mv Universidade Federal de Itajubá
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNIFEI (RIUNIFEI)
instname:Universidade Federal de Itajubá (UNIFEI)
instacron:UNIFEI
instname_str Universidade Federal de Itajubá (UNIFEI)
instacron_str UNIFEI
institution UNIFEI
reponame_str Repositório Institucional da UNIFEI (RIUNIFEI)
collection Repositório Institucional da UNIFEI (RIUNIFEI)
bitstream.url.fl_str_mv https://repositorio.unifei.edu.br/jspui/bitstream/123456789/3764/2/license.txt
https://repositorio.unifei.edu.br/jspui/bitstream/123456789/3764/1/Tese_200331245.pdf
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
1ca030c81bdb6ea81a458d0a6847dd72
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UNIFEI (RIUNIFEI) - Universidade Federal de Itajubá (UNIFEI)
repository.mail.fl_str_mv repositorio@unifei.edu.br || geraldocarlos@unifei.edu.br
_version_ 1801863210009100288