Uma abordagem para parametrização de Redes Neurais de Função de Base Radial baseada na combinação de procedimentos não supervisionados e de uma nova proposição de escalonamento de parâmetros.

Detalhes bibliográficos
Autor(a) principal: SANTOS, Flávia Aparecida Oliveira
Data de Publicação: 2015
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UNIFEI (RIUNIFEI)
Texto Completo: https://repositorio.unifei.edu.br/jspui/handle/123456789/200
Resumo: Neste trabalho será apresentada uma abordagem para parametrização de redes RBF (Radial Basis Function) baseada na combinação de procedimentos não supervisionados e uma nova proposição de escalonamento de parâmetros. A metodologia consiste em combinar procedimentos referenciados na literatura com o objetivo de obter modelos de redes RBF com melhores exatidões e algoritmos computacionais mais compactos. Alguns exemplos serão utilizados para ilustrar o emprego da abordagem proposta e também servirão para realizar comparações de resultados com os principais procedimentos referenciados em textos da área. As redes neurais com funções de base radial (RBF) são modelos não lineares que podem realizar um mapeamento (interpolação) eficiente de dados de entrada e saída de diversos tipos de sistemas, resultando em boa capacidade de generalização aliada a processamentos de informações de forma compacta, possibilitando na representação eficiente de sistemas dinâmicos complexos e de séries temporais, por exemplo. Os bons resultados na capacidade de interpolação de uma RBF dependem de alguns parâmetros que devem ser adequadamente ajustados. Algumas abordagens foram desenvolvidas nesse contexto. O procedimento proposto neste trabalho mostrou-se ser uma alternativa promissora, com aplicação direta e que apresenta uma exatidão adequada para várias aplicações práticas. Exemplos como aproximações de funções, modelagem de sistemas dinâmicos não lineares, previsão de série temporal e classificação de padrões serão discutidos com a finalidade de exemplificar os procedimentos propostos, além de servir de comparações com os resultados obtidos por outras técnicas utilizadas em redes RBF.
id UFEI_853b2a22d1fbed3ed5dfbbc88ca6ae1f
oai_identifier_str oai:repositorio.unifei.edu.br:123456789/200
network_acronym_str UFEI
network_name_str Repositório Institucional da UNIFEI (RIUNIFEI)
repository_id_str 7044
spelling 2015-08-212015-12-02T17:18:51Z2015-12-02T17:18:51ZSANTOS, Flávia Aparecida Oliveira. Uma abordagem para parametrização de Redes Neurais de Função de Base Radial baseada na combinação de procedimentos não supervisionados e de uma nova proposição de escalonamento de parâmetros. 2015. 86 f. Tese (Doutorado em Engenharia Elétrica) – Universidade Federal de Itajubá, Itajubá, 2015.https://repositorio.unifei.edu.br/jspui/handle/123456789/200Neste trabalho será apresentada uma abordagem para parametrização de redes RBF (Radial Basis Function) baseada na combinação de procedimentos não supervisionados e uma nova proposição de escalonamento de parâmetros. A metodologia consiste em combinar procedimentos referenciados na literatura com o objetivo de obter modelos de redes RBF com melhores exatidões e algoritmos computacionais mais compactos. Alguns exemplos serão utilizados para ilustrar o emprego da abordagem proposta e também servirão para realizar comparações de resultados com os principais procedimentos referenciados em textos da área. As redes neurais com funções de base radial (RBF) são modelos não lineares que podem realizar um mapeamento (interpolação) eficiente de dados de entrada e saída de diversos tipos de sistemas, resultando em boa capacidade de generalização aliada a processamentos de informações de forma compacta, possibilitando na representação eficiente de sistemas dinâmicos complexos e de séries temporais, por exemplo. Os bons resultados na capacidade de interpolação de uma RBF dependem de alguns parâmetros que devem ser adequadamente ajustados. Algumas abordagens foram desenvolvidas nesse contexto. O procedimento proposto neste trabalho mostrou-se ser uma alternativa promissora, com aplicação direta e que apresenta uma exatidão adequada para várias aplicações práticas. Exemplos como aproximações de funções, modelagem de sistemas dinâmicos não lineares, previsão de série temporal e classificação de padrões serão discutidos com a finalidade de exemplificar os procedimentos propostos, além de servir de comparações com os resultados obtidos por outras técnicas utilizadas em redes RBF.Uma abordagem para parametrização de Redes Neurais de Função de Base Radial baseada na combinação de procedimentos não supervisionados e de uma nova proposição de escalonamento de parâmetros.info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisItajubáUniversidade Federal de Itajubá86 p.Redes de função de base radialAjustes de parâmetrosRedes neurais artificiasAproximações de funçõesModelagem de sistemas dinâmicosPrevisões de séries temporaisClassificação de padrõesRadial basis function neural networkParameter adjustmentsArtificial neural networksApproximations of functionsModeling of dynamic systemsTime series predictionPattern classificationLOPES, Benedito Isaías de LimaPINHEIRO, Carlos Alberto MurariEngenharia ElétricaSistemas Elétricos de PotênciaSANTOS, Flávia Aparecida OliveiraPrograma de Pós-Graduação: Doutorado - Engenharia ElétricaIESTI - Instituto de Engenharia de Sistemas e Tecnologia da Informaçãoporreponame:Repositório Institucional da UNIFEI (RIUNIFEI)instname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIinfo:eu-repo/semantics/openAccessORIGINALtese_santos_2015.pdftese_santos_2015.pdfapplication/pdf1535390https://repositorio.unifei.edu.br/jspui/bitstream/123456789/200/1/tese_santos_2015.pdf77640ede2ab1f04cfc26cb49b5b7b399MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.unifei.edu.br/jspui/bitstream/123456789/200/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52123456789/2002024-03-11 11:30:03.314oai:repositorio.unifei.edu.br:123456789/200Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://repositorio.unifei.edu.br/oai/requestrepositorio@unifei.edu.br || geraldocarlos@unifei.edu.bropendoar:70442024-03-11T14:30:03Repositório Institucional da UNIFEI (RIUNIFEI) - Universidade Federal de Itajubá (UNIFEI)false
dc.title.pt_BR.fl_str_mv Uma abordagem para parametrização de Redes Neurais de Função de Base Radial baseada na combinação de procedimentos não supervisionados e de uma nova proposição de escalonamento de parâmetros.
title Uma abordagem para parametrização de Redes Neurais de Função de Base Radial baseada na combinação de procedimentos não supervisionados e de uma nova proposição de escalonamento de parâmetros.
spellingShingle Uma abordagem para parametrização de Redes Neurais de Função de Base Radial baseada na combinação de procedimentos não supervisionados e de uma nova proposição de escalonamento de parâmetros.
SANTOS, Flávia Aparecida Oliveira
title_short Uma abordagem para parametrização de Redes Neurais de Função de Base Radial baseada na combinação de procedimentos não supervisionados e de uma nova proposição de escalonamento de parâmetros.
title_full Uma abordagem para parametrização de Redes Neurais de Função de Base Radial baseada na combinação de procedimentos não supervisionados e de uma nova proposição de escalonamento de parâmetros.
title_fullStr Uma abordagem para parametrização de Redes Neurais de Função de Base Radial baseada na combinação de procedimentos não supervisionados e de uma nova proposição de escalonamento de parâmetros.
title_full_unstemmed Uma abordagem para parametrização de Redes Neurais de Função de Base Radial baseada na combinação de procedimentos não supervisionados e de uma nova proposição de escalonamento de parâmetros.
title_sort Uma abordagem para parametrização de Redes Neurais de Função de Base Radial baseada na combinação de procedimentos não supervisionados e de uma nova proposição de escalonamento de parâmetros.
author SANTOS, Flávia Aparecida Oliveira
author_facet SANTOS, Flávia Aparecida Oliveira
author_role author
dc.contributor.author.fl_str_mv SANTOS, Flávia Aparecida Oliveira
description Neste trabalho será apresentada uma abordagem para parametrização de redes RBF (Radial Basis Function) baseada na combinação de procedimentos não supervisionados e uma nova proposição de escalonamento de parâmetros. A metodologia consiste em combinar procedimentos referenciados na literatura com o objetivo de obter modelos de redes RBF com melhores exatidões e algoritmos computacionais mais compactos. Alguns exemplos serão utilizados para ilustrar o emprego da abordagem proposta e também servirão para realizar comparações de resultados com os principais procedimentos referenciados em textos da área. As redes neurais com funções de base radial (RBF) são modelos não lineares que podem realizar um mapeamento (interpolação) eficiente de dados de entrada e saída de diversos tipos de sistemas, resultando em boa capacidade de generalização aliada a processamentos de informações de forma compacta, possibilitando na representação eficiente de sistemas dinâmicos complexos e de séries temporais, por exemplo. Os bons resultados na capacidade de interpolação de uma RBF dependem de alguns parâmetros que devem ser adequadamente ajustados. Algumas abordagens foram desenvolvidas nesse contexto. O procedimento proposto neste trabalho mostrou-se ser uma alternativa promissora, com aplicação direta e que apresenta uma exatidão adequada para várias aplicações práticas. Exemplos como aproximações de funções, modelagem de sistemas dinâmicos não lineares, previsão de série temporal e classificação de padrões serão discutidos com a finalidade de exemplificar os procedimentos propostos, além de servir de comparações com os resultados obtidos por outras técnicas utilizadas em redes RBF.
publishDate 2015
dc.date.issued.fl_str_mv 2015-08-21
dc.date.available.fl_str_mv 2015-12-02T17:18:51Z
dc.date.accessioned.fl_str_mv 2015-12-02T17:18:51Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SANTOS, Flávia Aparecida Oliveira. Uma abordagem para parametrização de Redes Neurais de Função de Base Radial baseada na combinação de procedimentos não supervisionados e de uma nova proposição de escalonamento de parâmetros. 2015. 86 f. Tese (Doutorado em Engenharia Elétrica) – Universidade Federal de Itajubá, Itajubá, 2015.
dc.identifier.uri.fl_str_mv https://repositorio.unifei.edu.br/jspui/handle/123456789/200
identifier_str_mv SANTOS, Flávia Aparecida Oliveira. Uma abordagem para parametrização de Redes Neurais de Função de Base Radial baseada na combinação de procedimentos não supervisionados e de uma nova proposição de escalonamento de parâmetros. 2015. 86 f. Tese (Doutorado em Engenharia Elétrica) – Universidade Federal de Itajubá, Itajubá, 2015.
url https://repositorio.unifei.edu.br/jspui/handle/123456789/200
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.program.fl_str_mv Programa de Pós-Graduação: Doutorado - Engenharia Elétrica
dc.publisher.department.fl_str_mv IESTI - Instituto de Engenharia de Sistemas e Tecnologia da Informação
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNIFEI (RIUNIFEI)
instname:Universidade Federal de Itajubá (UNIFEI)
instacron:UNIFEI
instname_str Universidade Federal de Itajubá (UNIFEI)
instacron_str UNIFEI
institution UNIFEI
reponame_str Repositório Institucional da UNIFEI (RIUNIFEI)
collection Repositório Institucional da UNIFEI (RIUNIFEI)
bitstream.url.fl_str_mv https://repositorio.unifei.edu.br/jspui/bitstream/123456789/200/1/tese_santos_2015.pdf
https://repositorio.unifei.edu.br/jspui/bitstream/123456789/200/2/license.txt
bitstream.checksum.fl_str_mv 77640ede2ab1f04cfc26cb49b5b7b399
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UNIFEI (RIUNIFEI) - Universidade Federal de Itajubá (UNIFEI)
repository.mail.fl_str_mv repositorio@unifei.edu.br || geraldocarlos@unifei.edu.br
_version_ 1801863237342330880