Modelagem de Sistemas Dinâmicos Não Lineares via RBF-GOBF.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da UNIFEI (RIUNIFEI) |
Texto Completo: | https://repositorio.unifei.edu.br/jspui/handle/123456789/1038 |
Resumo: | Trata-se neste trabalho trata da modelagem e identificação de sistemas dinâmicos não lineares estáveis representáveis por modelos de Wiener por um estrutura formada por bases de funções ortonormais generalizadas (Generalized Orthonormal Basis Functions - GOBF) com funções internas e redes neurais com funções de base radial (Radial Basis Functions - RBF). Os modelos GOBF com funções internas são capazes de representar dinâmicas lineares intrincadas com uma parametrização que se vale apenas de valores reais, sejam os polos do sistema a ser representado complexos e/ou reais. Com informações de entrada e saída do sistema a ser identificado é possível obter um modelo GOBF-RBF inicial. Os clusters que determinam os parâmetros inciais das RBFs (centros das funções gaussianas e larguras ou spreads) são obtidos pelo método fuzzy C-means, o qual é inicializado com um número de centros pré-determinado, obtido pela técnica subtractive clustering, garantindo clusters com volume e densidade apropriados. São propostas duas técnicas para o ajuste dos parâmetros da estrutura. A primeira delas se baseia em um método de otimização não linear e os gradientes exatos da estrutura. Apresenta-se um procedimento para a obtenção dos cálculos analíticos dos gradientes de saída do modelo GOBF-RBF em relação a seus parâmetros (polos da base ortonormal, centros, larguras e pesos de saída da rede RBF). A segunda proposta se vale de um método metaheurístico chamado otimização por enxame de partículas com comportamento quântico. As metodologias são validadas com suas aplicações em três diferentes sistemas não lineares associados a modelos de processos práticos. |
id |
UFEI_89d1fbef5f18a570fb1de6c4a52a8d60 |
---|---|
oai_identifier_str |
oai:repositorio.unifei.edu.br:123456789/1038 |
network_acronym_str |
UFEI |
network_name_str |
Repositório Institucional da UNIFEI (RIUNIFEI) |
repository_id_str |
7044 |
spelling |
2017-112018-01-03T15:34:25Z2018-01-03T15:34:25ZRODOR, Fadul Ferrari. Modelagem de Sistemas Dinâmicos Não Lineares via RBF-GOBF. 2017. 97 f. Tese (Doutorado em Engenharia Elétrica) – Universidade Federal de Itajubá, Itajubá, 2017.https://repositorio.unifei.edu.br/jspui/handle/123456789/1038Trata-se neste trabalho trata da modelagem e identificação de sistemas dinâmicos não lineares estáveis representáveis por modelos de Wiener por um estrutura formada por bases de funções ortonormais generalizadas (Generalized Orthonormal Basis Functions - GOBF) com funções internas e redes neurais com funções de base radial (Radial Basis Functions - RBF). Os modelos GOBF com funções internas são capazes de representar dinâmicas lineares intrincadas com uma parametrização que se vale apenas de valores reais, sejam os polos do sistema a ser representado complexos e/ou reais. Com informações de entrada e saída do sistema a ser identificado é possível obter um modelo GOBF-RBF inicial. Os clusters que determinam os parâmetros inciais das RBFs (centros das funções gaussianas e larguras ou spreads) são obtidos pelo método fuzzy C-means, o qual é inicializado com um número de centros pré-determinado, obtido pela técnica subtractive clustering, garantindo clusters com volume e densidade apropriados. São propostas duas técnicas para o ajuste dos parâmetros da estrutura. A primeira delas se baseia em um método de otimização não linear e os gradientes exatos da estrutura. Apresenta-se um procedimento para a obtenção dos cálculos analíticos dos gradientes de saída do modelo GOBF-RBF em relação a seus parâmetros (polos da base ortonormal, centros, larguras e pesos de saída da rede RBF). A segunda proposta se vale de um método metaheurístico chamado otimização por enxame de partículas com comportamento quântico. As metodologias são validadas com suas aplicações em três diferentes sistemas não lineares associados a modelos de processos práticos.Modelagem de Sistemas Dinâmicos Não Lineares via RBF-GOBF.info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisItajubáUniversidade Federal de Itajubá97 p.Base de Funções Ortonormais GeneralizadasSistemas Dinâmicos Não-linearesIdentificação de SistemasRedes Neurais com Funções de Base RadialOtimização por enxame de partículasGeneralized Orthonormal Basis FunctionsNonlinear Dynamic SystemsSystem IdetificationRadial Basis Function Neural NetworkParticle Swarm OptimizationPINHEIRO, Carlos Alberto MurariMACHADO, Jeremias BarbosaEngenharia ElétricaAutomação e Sistemas Elétricos IndustriaisRODOR, Fadul FerrariPrograma de Pós-Graduação: Doutorado - Engenharia ElétricaIESTI - Instituto de Engenharia de Sistemas e Tecnologia da Informaçãoporreponame:Repositório Institucional da UNIFEI (RIUNIFEI)instname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIinfo:eu-repo/semantics/openAccessORIGINALtese_rodor_2017.pdftese_rodor_2017.pdfapplication/pdf3865672https://repositorio.unifei.edu.br/jspui/bitstream/123456789/1038/1/tese_rodor_2017.pdf1587026ab00ed77d2b4513144456d3d9MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.unifei.edu.br/jspui/bitstream/123456789/1038/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52123456789/10382024-02-14 14:10:24.517oai:repositorio.unifei.edu.br:123456789/1038Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://repositorio.unifei.edu.br/oai/requestrepositorio@unifei.edu.br || geraldocarlos@unifei.edu.bropendoar:70442024-02-14T17:10:24Repositório Institucional da UNIFEI (RIUNIFEI) - Universidade Federal de Itajubá (UNIFEI)false |
dc.title.pt_BR.fl_str_mv |
Modelagem de Sistemas Dinâmicos Não Lineares via RBF-GOBF. |
title |
Modelagem de Sistemas Dinâmicos Não Lineares via RBF-GOBF. |
spellingShingle |
Modelagem de Sistemas Dinâmicos Não Lineares via RBF-GOBF. RODOR, Fadul Ferrari |
title_short |
Modelagem de Sistemas Dinâmicos Não Lineares via RBF-GOBF. |
title_full |
Modelagem de Sistemas Dinâmicos Não Lineares via RBF-GOBF. |
title_fullStr |
Modelagem de Sistemas Dinâmicos Não Lineares via RBF-GOBF. |
title_full_unstemmed |
Modelagem de Sistemas Dinâmicos Não Lineares via RBF-GOBF. |
title_sort |
Modelagem de Sistemas Dinâmicos Não Lineares via RBF-GOBF. |
author |
RODOR, Fadul Ferrari |
author_facet |
RODOR, Fadul Ferrari |
author_role |
author |
dc.contributor.author.fl_str_mv |
RODOR, Fadul Ferrari |
description |
Trata-se neste trabalho trata da modelagem e identificação de sistemas dinâmicos não lineares estáveis representáveis por modelos de Wiener por um estrutura formada por bases de funções ortonormais generalizadas (Generalized Orthonormal Basis Functions - GOBF) com funções internas e redes neurais com funções de base radial (Radial Basis Functions - RBF). Os modelos GOBF com funções internas são capazes de representar dinâmicas lineares intrincadas com uma parametrização que se vale apenas de valores reais, sejam os polos do sistema a ser representado complexos e/ou reais. Com informações de entrada e saída do sistema a ser identificado é possível obter um modelo GOBF-RBF inicial. Os clusters que determinam os parâmetros inciais das RBFs (centros das funções gaussianas e larguras ou spreads) são obtidos pelo método fuzzy C-means, o qual é inicializado com um número de centros pré-determinado, obtido pela técnica subtractive clustering, garantindo clusters com volume e densidade apropriados. São propostas duas técnicas para o ajuste dos parâmetros da estrutura. A primeira delas se baseia em um método de otimização não linear e os gradientes exatos da estrutura. Apresenta-se um procedimento para a obtenção dos cálculos analíticos dos gradientes de saída do modelo GOBF-RBF em relação a seus parâmetros (polos da base ortonormal, centros, larguras e pesos de saída da rede RBF). A segunda proposta se vale de um método metaheurístico chamado otimização por enxame de partículas com comportamento quântico. As metodologias são validadas com suas aplicações em três diferentes sistemas não lineares associados a modelos de processos práticos. |
publishDate |
2017 |
dc.date.issued.fl_str_mv |
2017-11 |
dc.date.available.fl_str_mv |
2018-01-03T15:34:25Z |
dc.date.accessioned.fl_str_mv |
2018-01-03T15:34:25Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
RODOR, Fadul Ferrari. Modelagem de Sistemas Dinâmicos Não Lineares via RBF-GOBF. 2017. 97 f. Tese (Doutorado em Engenharia Elétrica) – Universidade Federal de Itajubá, Itajubá, 2017. |
dc.identifier.uri.fl_str_mv |
https://repositorio.unifei.edu.br/jspui/handle/123456789/1038 |
identifier_str_mv |
RODOR, Fadul Ferrari. Modelagem de Sistemas Dinâmicos Não Lineares via RBF-GOBF. 2017. 97 f. Tese (Doutorado em Engenharia Elétrica) – Universidade Federal de Itajubá, Itajubá, 2017. |
url |
https://repositorio.unifei.edu.br/jspui/handle/123456789/1038 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação: Doutorado - Engenharia Elétrica |
dc.publisher.department.fl_str_mv |
IESTI - Instituto de Engenharia de Sistemas e Tecnologia da Informação |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UNIFEI (RIUNIFEI) instname:Universidade Federal de Itajubá (UNIFEI) instacron:UNIFEI |
instname_str |
Universidade Federal de Itajubá (UNIFEI) |
instacron_str |
UNIFEI |
institution |
UNIFEI |
reponame_str |
Repositório Institucional da UNIFEI (RIUNIFEI) |
collection |
Repositório Institucional da UNIFEI (RIUNIFEI) |
bitstream.url.fl_str_mv |
https://repositorio.unifei.edu.br/jspui/bitstream/123456789/1038/1/tese_rodor_2017.pdf https://repositorio.unifei.edu.br/jspui/bitstream/123456789/1038/2/license.txt |
bitstream.checksum.fl_str_mv |
1587026ab00ed77d2b4513144456d3d9 8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UNIFEI (RIUNIFEI) - Universidade Federal de Itajubá (UNIFEI) |
repository.mail.fl_str_mv |
repositorio@unifei.edu.br || geraldocarlos@unifei.edu.br |
_version_ |
1801863201172750336 |