Análise de Capabilidade de Processos Multivariados usando o Método dos Componentes Principais Ponderados.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UNIFEI (RIUNIFEI) |
Texto Completo: | https://repositorio.unifei.edu.br/jspui/handle/123456789/554 |
Resumo: | A análise de capabilidade de processos tem sido usada para quantificar quão bem o processo atende aos requisitos dos clientes e para identificar e reduzir a variabilidade. No entanto, existe uma lacuna para se quantificar quando o processo apresenta características de qualidade correlacionadas, situação comum nos processos de fabricação. Considerando que os estudos desenvolvidos para dita análise em relação às métricas e propriedades estatísticas são em sua maioria para processos univariados, e que os métodos multivariados existentes apresentam restrições que fazem que sua aplicação seja limitada. Portanto, a principal contribuição deste estudo é a proposta de um método para análise multivariada de capabilidade, denominado Componentes Principais Ponderados (WPC). Este utiliza como resposta do modelo os escores dos componentes principais, ponderados por seus autovalores ou pela porcentagem de explicação de cada componente. O método proposto por Liao (2005) tem sido usado na otimização de processos com múltiplas respostas e foi aplicado por Peruchi et al. (2013) na determinação de índices de avaliação de sistemas de medição. No que diz respeito a esta nova abordagem, o WPC não foi simplesmente aplicado para se determinar os índices multivariados dos estimadores clássicos de capabilidade Cp, Cpk, Cpm e Cpmk; mas também para se estimar os índices de desempenho Pp, Ppk, Ppm e Ppmk, os intervalos de confiança das estimativas, a proporção de não conformes em PPM e o nível sigma. A eficiência do método se demonstrou usando dados da literatura, experimentais e simulados; neste último caso foi testado em diferentes níveis de desempenho de processo e graus de correlação. Em todos esses casos as estimativas do WPC foram comparadas com as de outros três métodos baseados em Análise de Componentes Principais (PCAM, PCAX e PCAW), e julgadas com intervalos de confiança univariados para se determinar se eram adequadas. O WPC se mostrou mais robusto do que os métodos PCAM e PCAW; além disso, exibiu um decrescimento das estimativas de desempenho com o aumento da correlação, tendência que já tem sido comprovada pelas pesquisas de Tano e Vännman (2013) e Guevara e Vargas (2007), e que é oposta aos métodos apresentados baseados em PCA. Isto faz presumir que o método proposto representa melhor o efeito de correlação entre as características, embora os métodos PCAX e PCAM tenham um bom comportamento perante dos intervalos de confiança univariados. |
id |
UFEI_8e1dac9277217cd849b744b1b248d63b |
---|---|
oai_identifier_str |
oai:repositorio.unifei.edu.br:123456789/554 |
network_acronym_str |
UFEI |
network_name_str |
Repositório Institucional da UNIFEI (RIUNIFEI) |
repository_id_str |
7044 |
spelling |
2014-11-202016-09-02T12:34:18Z2016-09-02T12:34:18ZLARGO, Jhon Jairo Josa. Análise de Capabilidade de Processos Multivariados usando o Método dos Componentes Principais Ponderados. 2014. 144 f. Dissertação (Mestrado em Engenharia de Produção) – Universidade Federal de Itajubá, Itajubá, 2014.https://repositorio.unifei.edu.br/jspui/handle/123456789/554A análise de capabilidade de processos tem sido usada para quantificar quão bem o processo atende aos requisitos dos clientes e para identificar e reduzir a variabilidade. No entanto, existe uma lacuna para se quantificar quando o processo apresenta características de qualidade correlacionadas, situação comum nos processos de fabricação. Considerando que os estudos desenvolvidos para dita análise em relação às métricas e propriedades estatísticas são em sua maioria para processos univariados, e que os métodos multivariados existentes apresentam restrições que fazem que sua aplicação seja limitada. Portanto, a principal contribuição deste estudo é a proposta de um método para análise multivariada de capabilidade, denominado Componentes Principais Ponderados (WPC). Este utiliza como resposta do modelo os escores dos componentes principais, ponderados por seus autovalores ou pela porcentagem de explicação de cada componente. O método proposto por Liao (2005) tem sido usado na otimização de processos com múltiplas respostas e foi aplicado por Peruchi et al. (2013) na determinação de índices de avaliação de sistemas de medição. No que diz respeito a esta nova abordagem, o WPC não foi simplesmente aplicado para se determinar os índices multivariados dos estimadores clássicos de capabilidade Cp, Cpk, Cpm e Cpmk; mas também para se estimar os índices de desempenho Pp, Ppk, Ppm e Ppmk, os intervalos de confiança das estimativas, a proporção de não conformes em PPM e o nível sigma. A eficiência do método se demonstrou usando dados da literatura, experimentais e simulados; neste último caso foi testado em diferentes níveis de desempenho de processo e graus de correlação. Em todos esses casos as estimativas do WPC foram comparadas com as de outros três métodos baseados em Análise de Componentes Principais (PCAM, PCAX e PCAW), e julgadas com intervalos de confiança univariados para se determinar se eram adequadas. O WPC se mostrou mais robusto do que os métodos PCAM e PCAW; além disso, exibiu um decrescimento das estimativas de desempenho com o aumento da correlação, tendência que já tem sido comprovada pelas pesquisas de Tano e Vännman (2013) e Guevara e Vargas (2007), e que é oposta aos métodos apresentados baseados em PCA. Isto faz presumir que o método proposto representa melhor o efeito de correlação entre as características, embora os métodos PCAX e PCAM tenham um bom comportamento perante dos intervalos de confiança univariados.Análise de Capabilidade de Processos Multivariados usando o Método dos Componentes Principais Ponderados.info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisItajubáUniversidade Federal de Itajubá144 p.Índices de avaliação de processosÍndices de Capabilidade de Processos Multivariados (ICPMs)Análise de Componentes Principais (PCA)Componentes Principais Ponderados (WPC)Process assessment indexesMultivariate Process Capability Indexes(MPCIs)Principal Component Analysis(PCA)Weighted Principal Components(WPC)BALESTRASSI, Pedro PauloPERUCHI, Rogério SantanaEngenharia de ProduçãoQualidade e ProdutoLARGO, Jhon Jairo JosaPrograma de Pós-Graduação: Mestrado - Engenharia de ProduçãoIEPG - Instituto de Engenharia de Produção e Gestãoporreponame:Repositório Institucional da UNIFEI (RIUNIFEI)instname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIinfo:eu-repo/semantics/openAccessORIGINALdissertacao_largo_2014.pdfdissertacao_largo_2014.pdfapplication/pdf2139913https://repositorio.unifei.edu.br/jspui/bitstream/123456789/554/1/dissertacao_largo_2014.pdff37b27edb88f2a46cc2702e9f5730ff4MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.unifei.edu.br/jspui/bitstream/123456789/554/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52123456789/5542024-03-15 15:00:56.454oai:repositorio.unifei.edu.br:123456789/554Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://repositorio.unifei.edu.br/oai/requestrepositorio@unifei.edu.br || geraldocarlos@unifei.edu.bropendoar:70442024-03-15T18:00:56Repositório Institucional da UNIFEI (RIUNIFEI) - Universidade Federal de Itajubá (UNIFEI)false |
dc.title.pt_BR.fl_str_mv |
Análise de Capabilidade de Processos Multivariados usando o Método dos Componentes Principais Ponderados. |
title |
Análise de Capabilidade de Processos Multivariados usando o Método dos Componentes Principais Ponderados. |
spellingShingle |
Análise de Capabilidade de Processos Multivariados usando o Método dos Componentes Principais Ponderados. LARGO, Jhon Jairo Josa |
title_short |
Análise de Capabilidade de Processos Multivariados usando o Método dos Componentes Principais Ponderados. |
title_full |
Análise de Capabilidade de Processos Multivariados usando o Método dos Componentes Principais Ponderados. |
title_fullStr |
Análise de Capabilidade de Processos Multivariados usando o Método dos Componentes Principais Ponderados. |
title_full_unstemmed |
Análise de Capabilidade de Processos Multivariados usando o Método dos Componentes Principais Ponderados. |
title_sort |
Análise de Capabilidade de Processos Multivariados usando o Método dos Componentes Principais Ponderados. |
author |
LARGO, Jhon Jairo Josa |
author_facet |
LARGO, Jhon Jairo Josa |
author_role |
author |
dc.contributor.author.fl_str_mv |
LARGO, Jhon Jairo Josa |
description |
A análise de capabilidade de processos tem sido usada para quantificar quão bem o processo atende aos requisitos dos clientes e para identificar e reduzir a variabilidade. No entanto, existe uma lacuna para se quantificar quando o processo apresenta características de qualidade correlacionadas, situação comum nos processos de fabricação. Considerando que os estudos desenvolvidos para dita análise em relação às métricas e propriedades estatísticas são em sua maioria para processos univariados, e que os métodos multivariados existentes apresentam restrições que fazem que sua aplicação seja limitada. Portanto, a principal contribuição deste estudo é a proposta de um método para análise multivariada de capabilidade, denominado Componentes Principais Ponderados (WPC). Este utiliza como resposta do modelo os escores dos componentes principais, ponderados por seus autovalores ou pela porcentagem de explicação de cada componente. O método proposto por Liao (2005) tem sido usado na otimização de processos com múltiplas respostas e foi aplicado por Peruchi et al. (2013) na determinação de índices de avaliação de sistemas de medição. No que diz respeito a esta nova abordagem, o WPC não foi simplesmente aplicado para se determinar os índices multivariados dos estimadores clássicos de capabilidade Cp, Cpk, Cpm e Cpmk; mas também para se estimar os índices de desempenho Pp, Ppk, Ppm e Ppmk, os intervalos de confiança das estimativas, a proporção de não conformes em PPM e o nível sigma. A eficiência do método se demonstrou usando dados da literatura, experimentais e simulados; neste último caso foi testado em diferentes níveis de desempenho de processo e graus de correlação. Em todos esses casos as estimativas do WPC foram comparadas com as de outros três métodos baseados em Análise de Componentes Principais (PCAM, PCAX e PCAW), e julgadas com intervalos de confiança univariados para se determinar se eram adequadas. O WPC se mostrou mais robusto do que os métodos PCAM e PCAW; além disso, exibiu um decrescimento das estimativas de desempenho com o aumento da correlação, tendência que já tem sido comprovada pelas pesquisas de Tano e Vännman (2013) e Guevara e Vargas (2007), e que é oposta aos métodos apresentados baseados em PCA. Isto faz presumir que o método proposto representa melhor o efeito de correlação entre as características, embora os métodos PCAX e PCAM tenham um bom comportamento perante dos intervalos de confiança univariados. |
publishDate |
2014 |
dc.date.issued.fl_str_mv |
2014-11-20 |
dc.date.available.fl_str_mv |
2016-09-02T12:34:18Z |
dc.date.accessioned.fl_str_mv |
2016-09-02T12:34:18Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
LARGO, Jhon Jairo Josa. Análise de Capabilidade de Processos Multivariados usando o Método dos Componentes Principais Ponderados. 2014. 144 f. Dissertação (Mestrado em Engenharia de Produção) – Universidade Federal de Itajubá, Itajubá, 2014. |
dc.identifier.uri.fl_str_mv |
https://repositorio.unifei.edu.br/jspui/handle/123456789/554 |
identifier_str_mv |
LARGO, Jhon Jairo Josa. Análise de Capabilidade de Processos Multivariados usando o Método dos Componentes Principais Ponderados. 2014. 144 f. Dissertação (Mestrado em Engenharia de Produção) – Universidade Federal de Itajubá, Itajubá, 2014. |
url |
https://repositorio.unifei.edu.br/jspui/handle/123456789/554 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação: Mestrado - Engenharia de Produção |
dc.publisher.department.fl_str_mv |
IEPG - Instituto de Engenharia de Produção e Gestão |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UNIFEI (RIUNIFEI) instname:Universidade Federal de Itajubá (UNIFEI) instacron:UNIFEI |
instname_str |
Universidade Federal de Itajubá (UNIFEI) |
instacron_str |
UNIFEI |
institution |
UNIFEI |
reponame_str |
Repositório Institucional da UNIFEI (RIUNIFEI) |
collection |
Repositório Institucional da UNIFEI (RIUNIFEI) |
bitstream.url.fl_str_mv |
https://repositorio.unifei.edu.br/jspui/bitstream/123456789/554/1/dissertacao_largo_2014.pdf https://repositorio.unifei.edu.br/jspui/bitstream/123456789/554/2/license.txt |
bitstream.checksum.fl_str_mv |
f37b27edb88f2a46cc2702e9f5730ff4 8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UNIFEI (RIUNIFEI) - Universidade Federal de Itajubá (UNIFEI) |
repository.mail.fl_str_mv |
repositorio@unifei.edu.br || geraldocarlos@unifei.edu.br |
_version_ |
1801863184812867584 |