Machine learning-based fault detection and diagnosis in electric motors

Detalhes bibliográficos
Autor(a) principal: RIBEIRO JUNIOR, Ronny Francis
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Institucional da UNIFEI (RIUNIFEI)
Texto Completo: https://repositorio.unifei.edu.br/jspui/handle/123456789/3109
Resumo: O diagnóstico de falhas é fundamental para qualquer indústria de manutenção, a detecção precoce de falhas pode evitar falhas catastróficas, bem como perda de tempo e dinheiro. Tendo em vista esses objetivos, a análise de vibração através do domínio da frequência é uma técnica madura. Embora bem estabelecidos, os métodos tradicionais envolvem um alto custo de tempo e pessoas para identificar falhas, fazendo com que os métodos de aprendizado de máquina cresçam nos últimos anos. Os métodos de Machine learning (ML) podem ser divididos em dois grandes grupos de aprendizagem: supervisionado e não supervisionado, sendo a principal diferença entre eles é o conjunto de dados que está rotulado ou não. Este estudo apresenta um total de quatro métodos diferentes para detecção e diagnóstico de falhas. A análise da frequência do sinal de vibração foi a primeira abordagem empregada. foi escolhida para validar os resultados futuros dos métodos de ML. O Gaussian Mixture Model (GMM) foi empregado para a técnica não supervisionada. O GMM é um modelo probabilístico em que todos os pontos de dados são considerados gerados por um número finito de distribuições gaussianas com parâmetros desconhecidos. Para a aprendizagem supervisionada, foi utilizada a Convolutional Neural Network (CNN). CNNs são redes feedforward que foram inspiradas por processos de reconhecimento de padrões biológicos. Todos os métodos foram testados por meio de uma série de experimentos com motores elétricos reais. Os resultados mostraram que todos os métodos podem detectar e classificar os motores em várias condições de operação induzida: íntegra, desequilibrado, folga mecânica, desalinhamento, eixo empenado, barra quebrada e condição de falha do rolamento. Embora todas as abordagens sejam capazes de identificar a falha, cada técnica tem benefícios e limitações que as tornam melhores para certos tipos de aplicações, por isso, também e feita uma comparação entre os métodos.
id UFEI_a6ca6d49a8c2dd03fe429a289a163584
oai_identifier_str oai:repositorio.unifei.edu.br:123456789/3109
network_acronym_str UFEI
network_name_str Repositório Institucional da UNIFEI (RIUNIFEI)
repository_id_str 7044
spelling 2021-02-162022-02-182022-02-18T11:24:00Z2022-02-18T11:24:00Zhttps://repositorio.unifei.edu.br/jspui/handle/123456789/3109O diagnóstico de falhas é fundamental para qualquer indústria de manutenção, a detecção precoce de falhas pode evitar falhas catastróficas, bem como perda de tempo e dinheiro. Tendo em vista esses objetivos, a análise de vibração através do domínio da frequência é uma técnica madura. Embora bem estabelecidos, os métodos tradicionais envolvem um alto custo de tempo e pessoas para identificar falhas, fazendo com que os métodos de aprendizado de máquina cresçam nos últimos anos. Os métodos de Machine learning (ML) podem ser divididos em dois grandes grupos de aprendizagem: supervisionado e não supervisionado, sendo a principal diferença entre eles é o conjunto de dados que está rotulado ou não. Este estudo apresenta um total de quatro métodos diferentes para detecção e diagnóstico de falhas. A análise da frequência do sinal de vibração foi a primeira abordagem empregada. foi escolhida para validar os resultados futuros dos métodos de ML. O Gaussian Mixture Model (GMM) foi empregado para a técnica não supervisionada. O GMM é um modelo probabilístico em que todos os pontos de dados são considerados gerados por um número finito de distribuições gaussianas com parâmetros desconhecidos. Para a aprendizagem supervisionada, foi utilizada a Convolutional Neural Network (CNN). CNNs são redes feedforward que foram inspiradas por processos de reconhecimento de padrões biológicos. Todos os métodos foram testados por meio de uma série de experimentos com motores elétricos reais. Os resultados mostraram que todos os métodos podem detectar e classificar os motores em várias condições de operação induzida: íntegra, desequilibrado, folga mecânica, desalinhamento, eixo empenado, barra quebrada e condição de falha do rolamento. Embora todas as abordagens sejam capazes de identificar a falha, cada técnica tem benefícios e limitações que as tornam melhores para certos tipos de aplicações, por isso, também e feita uma comparação entre os métodos.Fault diagnosis is critical to any maintenance industry, as early fault detection can prevent catastrophic failures as well as a waste of time and money. In view of these objectives, vibration analysis in the frequency domain is a mature technique. Although well established, traditional methods involve a high cost of time and people to identify failures, causing machine learning methods to grow in recent years. The Machine learning (ML) methods can be divided into two large learning groups: supervised and unsupervised, with the main difference between them being whether the dataset is labeled or not. This study presents a total of four different methods for fault detection and diagnosis. The frequency analysis of the vibration signal was the first approach employed. This analysis was chosen to validate the future results of the ML methods. The Gaussian Mixture model (GMM) was employed for the unsupervised technique. A GMM is a probabilistic model in which all data points are assumed to be generated by a finite number of Gaussian distributions with unknown parameters. For supervised learning, the Convolution neural network (CNN) was used. CNNs are feedforward networks that were inspired by biological pattern recognition processes. All methods were tested through a series of experiments with real electric motors. Results showed that all methods can detect and classify the motors in several induced operation conditions: healthy, unbalanced, mechanical looseness, misalignment, bent shaft, broken bar, and bearing fault condition. Although all approaches are able to identify the fault, each technique has benefits and limitations that make them better for certain types of applications, therefore, a comparison is also made between the methods.engUniversidade Federal de ItajubáPrograma de Pós-Graduação: Mestrado - Engenharia MecânicaUNIFEIBrasilIEM - Instituto de Engenharia MecânicaCNPQ::ENGENHARIAS::ENGENHARIA MECÂNICAVibraçãoDiagnóstico de falhasAnalise de frequênciaMachine learningGaussian mixture modelConvolution neural networkMotor elétricoMachine learning-based fault detection and diagnosis in electric motorsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisGOMES, Guilherme Ferreirahttp://lattes.cnpq.br/4963257858781799http://lattes.cnpq.br/7222317956827988RIBEIRO JUNIOR, Ronny FrancisRIBEIRO JUNIOR, Ronny Francis. Machine learning-based fault detection and diagnosis in electric motors. 2021. 85 f. Dissertação. (Mestrado em Engenharia Mecânica) – Universidade Federal de Itajubá, Itajubá, 2021.info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNIFEI (RIUNIFEI)instname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEILICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.unifei.edu.br/jspui/bitstream/123456789/3109/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINALDissertação_2022033.pdfDissertação_2022033.pdfapplication/pdf10336735https://repositorio.unifei.edu.br/jspui/bitstream/123456789/3109/1/Disserta%c3%a7%c3%a3o_2022033.pdfb37790547936d9083b4a746bc27cffa7MD51123456789/31092022-02-18 08:24:03.617oai:repositorio.unifei.edu.br:123456789/3109Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://repositorio.unifei.edu.br/oai/requestrepositorio@unifei.edu.br || geraldocarlos@unifei.edu.bropendoar:70442022-02-18T11:24:03Repositório Institucional da UNIFEI (RIUNIFEI) - Universidade Federal de Itajubá (UNIFEI)false
dc.title.pt_BR.fl_str_mv Machine learning-based fault detection and diagnosis in electric motors
title Machine learning-based fault detection and diagnosis in electric motors
spellingShingle Machine learning-based fault detection and diagnosis in electric motors
RIBEIRO JUNIOR, Ronny Francis
CNPQ::ENGENHARIAS::ENGENHARIA MECÂNICA
Vibração
Diagnóstico de falhas
Analise de frequência
Machine learning
Gaussian mixture model
Convolution neural network
Motor elétrico
title_short Machine learning-based fault detection and diagnosis in electric motors
title_full Machine learning-based fault detection and diagnosis in electric motors
title_fullStr Machine learning-based fault detection and diagnosis in electric motors
title_full_unstemmed Machine learning-based fault detection and diagnosis in electric motors
title_sort Machine learning-based fault detection and diagnosis in electric motors
author RIBEIRO JUNIOR, Ronny Francis
author_facet RIBEIRO JUNIOR, Ronny Francis
author_role author
dc.contributor.advisor1.fl_str_mv GOMES, Guilherme Ferreira
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/4963257858781799
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/7222317956827988
dc.contributor.author.fl_str_mv RIBEIRO JUNIOR, Ronny Francis
contributor_str_mv GOMES, Guilherme Ferreira
dc.subject.cnpq.fl_str_mv CNPQ::ENGENHARIAS::ENGENHARIA MECÂNICA
topic CNPQ::ENGENHARIAS::ENGENHARIA MECÂNICA
Vibração
Diagnóstico de falhas
Analise de frequência
Machine learning
Gaussian mixture model
Convolution neural network
Motor elétrico
dc.subject.por.fl_str_mv Vibração
Diagnóstico de falhas
Analise de frequência
Machine learning
Gaussian mixture model
Convolution neural network
Motor elétrico
description O diagnóstico de falhas é fundamental para qualquer indústria de manutenção, a detecção precoce de falhas pode evitar falhas catastróficas, bem como perda de tempo e dinheiro. Tendo em vista esses objetivos, a análise de vibração através do domínio da frequência é uma técnica madura. Embora bem estabelecidos, os métodos tradicionais envolvem um alto custo de tempo e pessoas para identificar falhas, fazendo com que os métodos de aprendizado de máquina cresçam nos últimos anos. Os métodos de Machine learning (ML) podem ser divididos em dois grandes grupos de aprendizagem: supervisionado e não supervisionado, sendo a principal diferença entre eles é o conjunto de dados que está rotulado ou não. Este estudo apresenta um total de quatro métodos diferentes para detecção e diagnóstico de falhas. A análise da frequência do sinal de vibração foi a primeira abordagem empregada. foi escolhida para validar os resultados futuros dos métodos de ML. O Gaussian Mixture Model (GMM) foi empregado para a técnica não supervisionada. O GMM é um modelo probabilístico em que todos os pontos de dados são considerados gerados por um número finito de distribuições gaussianas com parâmetros desconhecidos. Para a aprendizagem supervisionada, foi utilizada a Convolutional Neural Network (CNN). CNNs são redes feedforward que foram inspiradas por processos de reconhecimento de padrões biológicos. Todos os métodos foram testados por meio de uma série de experimentos com motores elétricos reais. Os resultados mostraram que todos os métodos podem detectar e classificar os motores em várias condições de operação induzida: íntegra, desequilibrado, folga mecânica, desalinhamento, eixo empenado, barra quebrada e condição de falha do rolamento. Embora todas as abordagens sejam capazes de identificar a falha, cada técnica tem benefícios e limitações que as tornam melhores para certos tipos de aplicações, por isso, também e feita uma comparação entre os métodos.
publishDate 2021
dc.date.issued.fl_str_mv 2021-02-16
dc.date.available.fl_str_mv 2022-02-18
2022-02-18T11:24:00Z
dc.date.accessioned.fl_str_mv 2022-02-18T11:24:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.unifei.edu.br/jspui/handle/123456789/3109
url https://repositorio.unifei.edu.br/jspui/handle/123456789/3109
dc.language.iso.fl_str_mv eng
language eng
dc.relation.references.pt_BR.fl_str_mv RIBEIRO JUNIOR, Ronny Francis. Machine learning-based fault detection and diagnosis in electric motors. 2021. 85 f. Dissertação. (Mestrado em Engenharia Mecânica) – Universidade Federal de Itajubá, Itajubá, 2021.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Itajubá
dc.publisher.program.fl_str_mv Programa de Pós-Graduação: Mestrado - Engenharia Mecânica
dc.publisher.initials.fl_str_mv UNIFEI
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv IEM - Instituto de Engenharia Mecânica
publisher.none.fl_str_mv Universidade Federal de Itajubá
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNIFEI (RIUNIFEI)
instname:Universidade Federal de Itajubá (UNIFEI)
instacron:UNIFEI
instname_str Universidade Federal de Itajubá (UNIFEI)
instacron_str UNIFEI
institution UNIFEI
reponame_str Repositório Institucional da UNIFEI (RIUNIFEI)
collection Repositório Institucional da UNIFEI (RIUNIFEI)
bitstream.url.fl_str_mv https://repositorio.unifei.edu.br/jspui/bitstream/123456789/3109/2/license.txt
https://repositorio.unifei.edu.br/jspui/bitstream/123456789/3109/1/Disserta%c3%a7%c3%a3o_2022033.pdf
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
b37790547936d9083b4a746bc27cffa7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UNIFEI (RIUNIFEI) - Universidade Federal de Itajubá (UNIFEI)
repository.mail.fl_str_mv repositorio@unifei.edu.br || geraldocarlos@unifei.edu.br
_version_ 1801863198917263360