Redução do espaço de busca em problemas de Otimização via Simulação utilizando Análise Envoltória de Dados e Arranjos Ortogonais de Taguchi.

Detalhes bibliográficos
Autor(a) principal: MIRANDA, Rafael de Carvalho
Data de Publicação: 2015
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UNIFEI (RIUNIFEI)
Texto Completo: https://repositorio.unifei.edu.br/jspui/handle/123456789/126
Resumo: O desenvolvimento de diversas metaheurísticas possibilitaram o uso da otimização em ambientes de simulação a eventos discretos. No entanto, este campo de pesquisa ainda é pouco utilizado, principalmente, em função do tempo necessário para a convergência desses algoritmos. Nesse sentido, a otimização via simulação é influenciada pela complexidade do modelo de simulação, pelo número de variáveis de decisão e por seus limites de variação. Neste contexto, este trabalho propõe um método capaz de identificar os melhores limites de variação, para cada variável de decisão, em um problema de otimização via simulação, proporcionando uma redução do tempo computacional, ao mesmo tempo em que permite alcançar soluções de elevada qualidade (soluções ótimas ou estatisticamente iguais a ela). Para isso, o método proposto combina a simulação a eventos discretos, arranjos ortogonais de Taguchi e a análise de supereficiência desenvolvida no modelo DEA BCC. Neste método, o espaço de busca do problema de otimização via simulação é representado por meio de um arranjo ortogonal de Taguchi. Para gerar as saídas do modelo DEA BCC, executou-se a simulação do arranjo ortogonal (cenários) e posteriormente a análise de supereficiência. Com base nestes resultados, os cenários são ordenados, sendo adotados como novos limites do problema de otimização os valores das variáveis dos dois cenários de maior supereficiência. Para validar o método proposto, foram utilizados quinze objetos de estudo. Os casos representam problemas complexos de empresas de manufatura e da área hospitalar. Dessa forma, sua eficácia pode ser verificada, uma vez que permitiu reduções médias de 97% no espaço de busca, e de 42% no tempo computacional necessário para se obter uma solução. Além disso, para quatro dos casos estudados, foi realizada a comparação entre o resultado ótimo obtido com a simulação de toda região de solução, e o resultado da otimização realizada no espaço de busca reduzido. Pode-se concluir, com um nível de 95% de confiança, que as respostas obtidas foram estatisticamente iguais.
id UFEI_d2c5e2ce46ceb1b8bdd4b54c5d4dc522
oai_identifier_str oai:repositorio.unifei.edu.br:123456789/126
network_acronym_str UFEI
network_name_str Repositório Institucional da UNIFEI (RIUNIFEI)
repository_id_str 7044
spelling 2015-04-282015-10-13T18:06:46Z2015-10-13T18:06:46ZMIRANDA, Rafael de Carvalho. Redução do espaço de busca em problemas de Otimização via Simulação utilizando Análise Envoltória de Dados e Arranjos Ortogonais de Taguchi. 2015. 186 f. Tese (Doutorado em Engenharia de Produção) – Universidade Federal de Itajubá, Itajubá, 2015.https://repositorio.unifei.edu.br/jspui/handle/123456789/126O desenvolvimento de diversas metaheurísticas possibilitaram o uso da otimização em ambientes de simulação a eventos discretos. No entanto, este campo de pesquisa ainda é pouco utilizado, principalmente, em função do tempo necessário para a convergência desses algoritmos. Nesse sentido, a otimização via simulação é influenciada pela complexidade do modelo de simulação, pelo número de variáveis de decisão e por seus limites de variação. Neste contexto, este trabalho propõe um método capaz de identificar os melhores limites de variação, para cada variável de decisão, em um problema de otimização via simulação, proporcionando uma redução do tempo computacional, ao mesmo tempo em que permite alcançar soluções de elevada qualidade (soluções ótimas ou estatisticamente iguais a ela). Para isso, o método proposto combina a simulação a eventos discretos, arranjos ortogonais de Taguchi e a análise de supereficiência desenvolvida no modelo DEA BCC. Neste método, o espaço de busca do problema de otimização via simulação é representado por meio de um arranjo ortogonal de Taguchi. Para gerar as saídas do modelo DEA BCC, executou-se a simulação do arranjo ortogonal (cenários) e posteriormente a análise de supereficiência. Com base nestes resultados, os cenários são ordenados, sendo adotados como novos limites do problema de otimização os valores das variáveis dos dois cenários de maior supereficiência. Para validar o método proposto, foram utilizados quinze objetos de estudo. Os casos representam problemas complexos de empresas de manufatura e da área hospitalar. Dessa forma, sua eficácia pode ser verificada, uma vez que permitiu reduções médias de 97% no espaço de busca, e de 42% no tempo computacional necessário para se obter uma solução. Além disso, para quatro dos casos estudados, foi realizada a comparação entre o resultado ótimo obtido com a simulação de toda região de solução, e o resultado da otimização realizada no espaço de busca reduzido. Pode-se concluir, com um nível de 95% de confiança, que as respostas obtidas foram estatisticamente iguais.Redução do espaço de busca em problemas de Otimização via Simulação utilizando Análise Envoltória de Dados e Arranjos Ortogonais de Taguchi.info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisItajubáUniversidade Federal de Itajubá186 p.Simulação a eventos discretosOtimização via simulaçãoDEA BCCSupereficiênciaArranjos ortogonais de TaguchiDiscrete-events simulationSimulation optimizationSuper-efficiencyTaguchi’s orthogonal arraysMONTEVECHI, José Arnaldo BarraEngenharia de ProduçãoEngenharia de ProduçãoMIRANDA, Rafael de CarvalhoPrograma de Pós-Graduação: Doutorado - Engenharia de ProduçãoIEPG - Instituto de Engenharia de Produção e Gestãoporreponame:Repositório Institucional da UNIFEI (RIUNIFEI)instname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIinfo:eu-repo/semantics/openAccessORIGINALtese_miranda_2015.pdftese_miranda_2015.pdfapplication/pdf3995203https://repositorio.unifei.edu.br/jspui/bitstream/123456789/126/1/tese_miranda_2015.pdf1e4943f9ad6b986f20d4ad091c2f3f0bMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.unifei.edu.br/jspui/bitstream/123456789/126/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52123456789/1262024-03-11 14:38:51.1oai:repositorio.unifei.edu.br:123456789/126Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://repositorio.unifei.edu.br/oai/requestrepositorio@unifei.edu.br || geraldocarlos@unifei.edu.bropendoar:70442024-03-11T17:38:51Repositório Institucional da UNIFEI (RIUNIFEI) - Universidade Federal de Itajubá (UNIFEI)false
dc.title.pt_BR.fl_str_mv Redução do espaço de busca em problemas de Otimização via Simulação utilizando Análise Envoltória de Dados e Arranjos Ortogonais de Taguchi.
title Redução do espaço de busca em problemas de Otimização via Simulação utilizando Análise Envoltória de Dados e Arranjos Ortogonais de Taguchi.
spellingShingle Redução do espaço de busca em problemas de Otimização via Simulação utilizando Análise Envoltória de Dados e Arranjos Ortogonais de Taguchi.
MIRANDA, Rafael de Carvalho
title_short Redução do espaço de busca em problemas de Otimização via Simulação utilizando Análise Envoltória de Dados e Arranjos Ortogonais de Taguchi.
title_full Redução do espaço de busca em problemas de Otimização via Simulação utilizando Análise Envoltória de Dados e Arranjos Ortogonais de Taguchi.
title_fullStr Redução do espaço de busca em problemas de Otimização via Simulação utilizando Análise Envoltória de Dados e Arranjos Ortogonais de Taguchi.
title_full_unstemmed Redução do espaço de busca em problemas de Otimização via Simulação utilizando Análise Envoltória de Dados e Arranjos Ortogonais de Taguchi.
title_sort Redução do espaço de busca em problemas de Otimização via Simulação utilizando Análise Envoltória de Dados e Arranjos Ortogonais de Taguchi.
author MIRANDA, Rafael de Carvalho
author_facet MIRANDA, Rafael de Carvalho
author_role author
dc.contributor.author.fl_str_mv MIRANDA, Rafael de Carvalho
description O desenvolvimento de diversas metaheurísticas possibilitaram o uso da otimização em ambientes de simulação a eventos discretos. No entanto, este campo de pesquisa ainda é pouco utilizado, principalmente, em função do tempo necessário para a convergência desses algoritmos. Nesse sentido, a otimização via simulação é influenciada pela complexidade do modelo de simulação, pelo número de variáveis de decisão e por seus limites de variação. Neste contexto, este trabalho propõe um método capaz de identificar os melhores limites de variação, para cada variável de decisão, em um problema de otimização via simulação, proporcionando uma redução do tempo computacional, ao mesmo tempo em que permite alcançar soluções de elevada qualidade (soluções ótimas ou estatisticamente iguais a ela). Para isso, o método proposto combina a simulação a eventos discretos, arranjos ortogonais de Taguchi e a análise de supereficiência desenvolvida no modelo DEA BCC. Neste método, o espaço de busca do problema de otimização via simulação é representado por meio de um arranjo ortogonal de Taguchi. Para gerar as saídas do modelo DEA BCC, executou-se a simulação do arranjo ortogonal (cenários) e posteriormente a análise de supereficiência. Com base nestes resultados, os cenários são ordenados, sendo adotados como novos limites do problema de otimização os valores das variáveis dos dois cenários de maior supereficiência. Para validar o método proposto, foram utilizados quinze objetos de estudo. Os casos representam problemas complexos de empresas de manufatura e da área hospitalar. Dessa forma, sua eficácia pode ser verificada, uma vez que permitiu reduções médias de 97% no espaço de busca, e de 42% no tempo computacional necessário para se obter uma solução. Além disso, para quatro dos casos estudados, foi realizada a comparação entre o resultado ótimo obtido com a simulação de toda região de solução, e o resultado da otimização realizada no espaço de busca reduzido. Pode-se concluir, com um nível de 95% de confiança, que as respostas obtidas foram estatisticamente iguais.
publishDate 2015
dc.date.issued.fl_str_mv 2015-04-28
dc.date.available.fl_str_mv 2015-10-13T18:06:46Z
dc.date.accessioned.fl_str_mv 2015-10-13T18:06:46Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv MIRANDA, Rafael de Carvalho. Redução do espaço de busca em problemas de Otimização via Simulação utilizando Análise Envoltória de Dados e Arranjos Ortogonais de Taguchi. 2015. 186 f. Tese (Doutorado em Engenharia de Produção) – Universidade Federal de Itajubá, Itajubá, 2015.
dc.identifier.uri.fl_str_mv https://repositorio.unifei.edu.br/jspui/handle/123456789/126
identifier_str_mv MIRANDA, Rafael de Carvalho. Redução do espaço de busca em problemas de Otimização via Simulação utilizando Análise Envoltória de Dados e Arranjos Ortogonais de Taguchi. 2015. 186 f. Tese (Doutorado em Engenharia de Produção) – Universidade Federal de Itajubá, Itajubá, 2015.
url https://repositorio.unifei.edu.br/jspui/handle/123456789/126
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.program.fl_str_mv Programa de Pós-Graduação: Doutorado - Engenharia de Produção
dc.publisher.department.fl_str_mv IEPG - Instituto de Engenharia de Produção e Gestão
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNIFEI (RIUNIFEI)
instname:Universidade Federal de Itajubá (UNIFEI)
instacron:UNIFEI
instname_str Universidade Federal de Itajubá (UNIFEI)
instacron_str UNIFEI
institution UNIFEI
reponame_str Repositório Institucional da UNIFEI (RIUNIFEI)
collection Repositório Institucional da UNIFEI (RIUNIFEI)
bitstream.url.fl_str_mv https://repositorio.unifei.edu.br/jspui/bitstream/123456789/126/1/tese_miranda_2015.pdf
https://repositorio.unifei.edu.br/jspui/bitstream/123456789/126/2/license.txt
bitstream.checksum.fl_str_mv 1e4943f9ad6b986f20d4ad091c2f3f0b
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UNIFEI (RIUNIFEI) - Universidade Federal de Itajubá (UNIFEI)
repository.mail.fl_str_mv repositorio@unifei.edu.br || geraldocarlos@unifei.edu.br
_version_ 1801863237577211904