Photoconductivity and electrical transport properties in PbTe single quantum well samples

Detalhes bibliográficos
Autor(a) principal: PENA, Fernando Silva
Data de Publicação: 2019
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da UNIFEI (RIUNIFEI)
Texto Completo: https://repositorio.unifei.edu.br/jspui/handle/123456789/2078
Resumo: We investigated the photoconductivity effect in 10 and 14 nm well thickness n-type PbTe/Pb1xEuxTe quantum wells, with x values of 0.12 and 0.1, for a temperature range of 300–10K using infrared light. Also, magnetotransport properties measurements are performed in 8, 10, 15, 20 and 30 nm well width p-type PbTe/Pb0.9Eu0.1Te quantum wells, at magnetic fields up to 33 T and temperature varying from 0.35 to 300 K, under dark and illuminated condition. For the n-type PbTe quantum wells, the measurements revealed that at high temperatures, the photoresponse has small amplitude. As temperature decreases to T~75 K, the photoconductivity amplitude increases reaching a maximum value 10 times higher than the original value before illumination. From Hall measurements performed under dark and light conditions, we show that this effect is a result of carrier concentration increase under illumination. Unexpectedly, for further reduction of temperature, the amplitude starts to decrease again. The electrical resistance profiles indicate that the transport occurs through barriers and the well that behave as two parallel channels. For temperatures below 75K, transport is more effective in the quantum well, where the signal reduction can be associated with the electron-electron scattering due to the increase in the carrier concentration that occurs under illumination. We also used the random potential model to explain the origin of the persistent effect observed in the photoconductivity curves. We compare magnetotransport measurements in p-type PbTe/Pb0.9Eu0.1Te quantum wells with different widths: 10, 15 and 20 nm, revealing clearly QHE and SdH oscillations, which evidences the two-dimension electron gas formation and the high quality of the samples. The 10 nm well width presented odd non-integer filling factors sequence (2.3; 3.4; 5.6; 6.9 and 8.8). The non-integer values may be associated to edge states, since that parallel conduction in the interface, between the barrier and well, was not enhanced or destroyed by illumination, although the carrier concentration was enhanced. Further investigations are necessary to clarify this effect and we consider the approximated integers 2; 4; 6; 7 and 9 calculated from experimental B values. For the 15 and 20 nm QW thickness, the SdHO and QHE also appear, however, it reveals an even integer filling factors sequence. The 10 nm QW thickness odd sequence originated from the first sub-band Landau level spin splitting; according to the Fermi level compared to the longitudinal and transversal resistance together with the first longitudinal sub-band spin splitting simulation. This assumption VI agrees with the FFT analysis that reveals the main frequency peak and two other ones, which may be the second harmonic spin splitting, up and down. The same FFT profile appears for the other two samples. Nevertheless, the 8 and 30 nm well width sample presented an insulator profile behavior and neither SdHO nor QHE were present. It is probably because the indium contacts do not diffuse through the PbTe layer well.
id UFEI_e831fb9fc1e067a8a108b99ab237975d
oai_identifier_str oai:repositorio.unifei.edu.br:123456789/2078
network_acronym_str UFEI
network_name_str Repositório Institucional da UNIFEI (RIUNIFEI)
repository_id_str 7044
spelling 2019-07-262019-11-22T18:27:22Z2019-11-22T18:27:22ZPENA, Fernando Silva. Photoconductivity and electrical transport properties in PbTe single quantum well samples. 2019. 119 f. Tese (Doutorado em Materiais para Engenharia) – Universidade Federal de Itajubá, Itajubá, 2019.https://repositorio.unifei.edu.br/jspui/handle/123456789/2078We investigated the photoconductivity effect in 10 and 14 nm well thickness n-type PbTe/Pb1xEuxTe quantum wells, with x values of 0.12 and 0.1, for a temperature range of 300–10K using infrared light. Also, magnetotransport properties measurements are performed in 8, 10, 15, 20 and 30 nm well width p-type PbTe/Pb0.9Eu0.1Te quantum wells, at magnetic fields up to 33 T and temperature varying from 0.35 to 300 K, under dark and illuminated condition. For the n-type PbTe quantum wells, the measurements revealed that at high temperatures, the photoresponse has small amplitude. As temperature decreases to T~75 K, the photoconductivity amplitude increases reaching a maximum value 10 times higher than the original value before illumination. From Hall measurements performed under dark and light conditions, we show that this effect is a result of carrier concentration increase under illumination. Unexpectedly, for further reduction of temperature, the amplitude starts to decrease again. The electrical resistance profiles indicate that the transport occurs through barriers and the well that behave as two parallel channels. For temperatures below 75K, transport is more effective in the quantum well, where the signal reduction can be associated with the electron-electron scattering due to the increase in the carrier concentration that occurs under illumination. We also used the random potential model to explain the origin of the persistent effect observed in the photoconductivity curves. We compare magnetotransport measurements in p-type PbTe/Pb0.9Eu0.1Te quantum wells with different widths: 10, 15 and 20 nm, revealing clearly QHE and SdH oscillations, which evidences the two-dimension electron gas formation and the high quality of the samples. The 10 nm well width presented odd non-integer filling factors sequence (2.3; 3.4; 5.6; 6.9 and 8.8). The non-integer values may be associated to edge states, since that parallel conduction in the interface, between the barrier and well, was not enhanced or destroyed by illumination, although the carrier concentration was enhanced. Further investigations are necessary to clarify this effect and we consider the approximated integers 2; 4; 6; 7 and 9 calculated from experimental B values. For the 15 and 20 nm QW thickness, the SdHO and QHE also appear, however, it reveals an even integer filling factors sequence. The 10 nm QW thickness odd sequence originated from the first sub-band Landau level spin splitting; according to the Fermi level compared to the longitudinal and transversal resistance together with the first longitudinal sub-band spin splitting simulation. This assumption VI agrees with the FFT analysis that reveals the main frequency peak and two other ones, which may be the second harmonic spin splitting, up and down. The same FFT profile appears for the other two samples. Nevertheless, the 8 and 30 nm well width sample presented an insulator profile behavior and neither SdHO nor QHE were present. It is probably because the indium contacts do not diffuse through the PbTe layer well.Photoconductivity and electrical transport properties in PbTe single quantum well samplesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisItajubáUNIFEI - Universidade Federal de Itajubá119 p.Fotocondutividade em poços quânticosPERES, Marcelos LimaRAPPL, Paulo Henrique de O.Materiais para EngenhariaCNPQ:: Engenharias - Não MetaisSemicondutoresPENA, Fernando SilvaPrograma de Pós-Graduação: Doutorado - Materiais para EngenhariaIFQ - Instituto de Física e Químicaengreponame:Repositório Institucional da UNIFEI (RIUNIFEI)instname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIinfo:eu-repo/semantics/openAccessORIGINALtese_2019029.pdftese_2019029.pdfapplication/pdf5177493https://repositorio.unifei.edu.br/jspui/bitstream/123456789/2078/1/tese_2019029.pdff869e58d1a6a77467a2579d1a2d92df0MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.unifei.edu.br/jspui/bitstream/123456789/2078/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52123456789/20782024-04-04 08:28:32.226oai:repositorio.unifei.edu.br:123456789/2078Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://repositorio.unifei.edu.br/oai/requestrepositorio@unifei.edu.br || geraldocarlos@unifei.edu.bropendoar:70442024-04-04T11:28:32Repositório Institucional da UNIFEI (RIUNIFEI) - Universidade Federal de Itajubá (UNIFEI)false
dc.title.pt_BR.fl_str_mv Photoconductivity and electrical transport properties in PbTe single quantum well samples
title Photoconductivity and electrical transport properties in PbTe single quantum well samples
spellingShingle Photoconductivity and electrical transport properties in PbTe single quantum well samples
PENA, Fernando Silva
title_short Photoconductivity and electrical transport properties in PbTe single quantum well samples
title_full Photoconductivity and electrical transport properties in PbTe single quantum well samples
title_fullStr Photoconductivity and electrical transport properties in PbTe single quantum well samples
title_full_unstemmed Photoconductivity and electrical transport properties in PbTe single quantum well samples
title_sort Photoconductivity and electrical transport properties in PbTe single quantum well samples
author PENA, Fernando Silva
author_facet PENA, Fernando Silva
author_role author
dc.contributor.author.fl_str_mv PENA, Fernando Silva
description We investigated the photoconductivity effect in 10 and 14 nm well thickness n-type PbTe/Pb1xEuxTe quantum wells, with x values of 0.12 and 0.1, for a temperature range of 300–10K using infrared light. Also, magnetotransport properties measurements are performed in 8, 10, 15, 20 and 30 nm well width p-type PbTe/Pb0.9Eu0.1Te quantum wells, at magnetic fields up to 33 T and temperature varying from 0.35 to 300 K, under dark and illuminated condition. For the n-type PbTe quantum wells, the measurements revealed that at high temperatures, the photoresponse has small amplitude. As temperature decreases to T~75 K, the photoconductivity amplitude increases reaching a maximum value 10 times higher than the original value before illumination. From Hall measurements performed under dark and light conditions, we show that this effect is a result of carrier concentration increase under illumination. Unexpectedly, for further reduction of temperature, the amplitude starts to decrease again. The electrical resistance profiles indicate that the transport occurs through barriers and the well that behave as two parallel channels. For temperatures below 75K, transport is more effective in the quantum well, where the signal reduction can be associated with the electron-electron scattering due to the increase in the carrier concentration that occurs under illumination. We also used the random potential model to explain the origin of the persistent effect observed in the photoconductivity curves. We compare magnetotransport measurements in p-type PbTe/Pb0.9Eu0.1Te quantum wells with different widths: 10, 15 and 20 nm, revealing clearly QHE and SdH oscillations, which evidences the two-dimension electron gas formation and the high quality of the samples. The 10 nm well width presented odd non-integer filling factors sequence (2.3; 3.4; 5.6; 6.9 and 8.8). The non-integer values may be associated to edge states, since that parallel conduction in the interface, between the barrier and well, was not enhanced or destroyed by illumination, although the carrier concentration was enhanced. Further investigations are necessary to clarify this effect and we consider the approximated integers 2; 4; 6; 7 and 9 calculated from experimental B values. For the 15 and 20 nm QW thickness, the SdHO and QHE also appear, however, it reveals an even integer filling factors sequence. The 10 nm QW thickness odd sequence originated from the first sub-band Landau level spin splitting; according to the Fermi level compared to the longitudinal and transversal resistance together with the first longitudinal sub-band spin splitting simulation. This assumption VI agrees with the FFT analysis that reveals the main frequency peak and two other ones, which may be the second harmonic spin splitting, up and down. The same FFT profile appears for the other two samples. Nevertheless, the 8 and 30 nm well width sample presented an insulator profile behavior and neither SdHO nor QHE were present. It is probably because the indium contacts do not diffuse through the PbTe layer well.
publishDate 2019
dc.date.issued.fl_str_mv 2019-07-26
dc.date.available.fl_str_mv 2019-11-22T18:27:22Z
dc.date.accessioned.fl_str_mv 2019-11-22T18:27:22Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv PENA, Fernando Silva. Photoconductivity and electrical transport properties in PbTe single quantum well samples. 2019. 119 f. Tese (Doutorado em Materiais para Engenharia) – Universidade Federal de Itajubá, Itajubá, 2019.
dc.identifier.uri.fl_str_mv https://repositorio.unifei.edu.br/jspui/handle/123456789/2078
identifier_str_mv PENA, Fernando Silva. Photoconductivity and electrical transport properties in PbTe single quantum well samples. 2019. 119 f. Tese (Doutorado em Materiais para Engenharia) – Universidade Federal de Itajubá, Itajubá, 2019.
url https://repositorio.unifei.edu.br/jspui/handle/123456789/2078
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.program.fl_str_mv Programa de Pós-Graduação: Doutorado - Materiais para Engenharia
dc.publisher.department.fl_str_mv IFQ - Instituto de Física e Química
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNIFEI (RIUNIFEI)
instname:Universidade Federal de Itajubá (UNIFEI)
instacron:UNIFEI
instname_str Universidade Federal de Itajubá (UNIFEI)
instacron_str UNIFEI
institution UNIFEI
reponame_str Repositório Institucional da UNIFEI (RIUNIFEI)
collection Repositório Institucional da UNIFEI (RIUNIFEI)
bitstream.url.fl_str_mv https://repositorio.unifei.edu.br/jspui/bitstream/123456789/2078/1/tese_2019029.pdf
https://repositorio.unifei.edu.br/jspui/bitstream/123456789/2078/2/license.txt
bitstream.checksum.fl_str_mv f869e58d1a6a77467a2579d1a2d92df0
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UNIFEI (RIUNIFEI) - Universidade Federal de Itajubá (UNIFEI)
repository.mail.fl_str_mv repositorio@unifei.edu.br || geraldocarlos@unifei.edu.br
_version_ 1801863219615105024