Proposta de redução do tempo computacional em problemas de otimização via Simulação a Eventos Discretos integrando Metaheurísticas, aprendizagem de máquina e paralelismo.

Detalhes bibliográficos
Autor(a) principal: SOUZA JUNIOR, Wilson Trigueiro de
Data de Publicação: 2019
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UNIFEI (RIUNIFEI)
Texto Completo: https://repositorio.unifei.edu.br/jspui/handle/123456789/1996
Resumo: As técnicas de simulação a eventos discretos têm sido empregadas em diversos setores industriais nas últimas décadas. Isso se tornou possível com a popularização de recursos computacionais e conhecimentos estatísticos aplicados na produção de bens e serviços. Um propósito recorrente ao se gerar uma simulação é a avaliação de uma grande quantidade de cenários, a fim de se encontrar uma relação ótima da combinação de variáveis para se atender restrições e funções de minimização e/ou maximização de objetivos. O processo de otimização dos modelos de simulação tem que lidar com o problema do aumento exponencial do espaço de busca por soluções, enquanto o número de variáveis de decisão cresce linearmente, tornando a resolução desse problema muito difícil ou impossível, no que tange a avaliação de todas as possíveis combinações quando não há tempo e/ou recurso computacional suficientes para tal. Com o aumento da complexidade referente à quantidade de possíveis soluções a serem consideradas pelos agentes tomadores de decisão, a área do conhecimento referente à Pesquisa Operacional tem aplicado técnicas tradicionalmente geradas para resolver problemas de otimização combinatória, em problemas de simulação a eventos discretos. A exemplo de tais técnicas de otimização, as metaheurísticas têm sido utilizadas com sucesso desde a origem dos primeiros métodos de otimização. Um fator restritivo na utilização destes métodos de otimização em simulação a eventos discretos é que para a realização do teste da qualidade de uma dada possível solução, em geral é necessário a utilização de um software simulador. Assim, ocorre que mesmo com o uso de método de otimização, muito tempo é dispendido para a obtenção de uma boa solução, pelo fato de ser necessário chamar recursivamente o simulador. Com o intuito de minimizar esse efeito, a presente tese associou quatro abordagens para a diminuição do tempo de resposta necessário para se obter boas soluções para a otimização de modelos de simulação a eventos discretos, utilizando de metamodelagem por aprendizagem de máquina e paralelismo de soluções, associadas a metaheurísticas de busca populacional. Neste contexto, foi possível a integração de todos estes conceitos em um mesmo ambiente, aplicando a mesma em três objetos de estudo referentes a problemas da Engenharia de Produção. Um ambiente de otimização open source foi construído em Python para a integração dos três objetos de estudo considerando 33 métodos de aprendizagem de máquina, duas metaheurística e paralelismo do processamento dos cenários. Como resultado médio do método proposto, foi possível a redução do tempo computacional em 93,5% em comparação ao método tradicional, com a utilização apenas de otimização por metaheurística, obtendo uma solução igual a 87,5% do valor de referência dos objetos de estudo.
id UFEI_ec93ec73e41df7a5cc2333a927f60ac6
oai_identifier_str oai:repositorio.unifei.edu.br:123456789/1996
network_acronym_str UFEI
network_name_str Repositório Institucional da UNIFEI (RIUNIFEI)
repository_id_str 7044
spelling 2019-07-052019-08-16T18:58:05Z2019-08-16T18:58:05ZSOUZA JÚNIOR, Wilson Trigueiro de. Proposta de redução do tempo computacional em problemas de otimização via Simulação a Eventos Discretos integrando Metaheurísticas, aprendizagem de máquina e paralelismo. 2019. 190 f. Tese (Doutorado em Engenharia de Produção) – Universidade Federal de Itajubá, Itajubá, 2019.https://repositorio.unifei.edu.br/jspui/handle/123456789/1996As técnicas de simulação a eventos discretos têm sido empregadas em diversos setores industriais nas últimas décadas. Isso se tornou possível com a popularização de recursos computacionais e conhecimentos estatísticos aplicados na produção de bens e serviços. Um propósito recorrente ao se gerar uma simulação é a avaliação de uma grande quantidade de cenários, a fim de se encontrar uma relação ótima da combinação de variáveis para se atender restrições e funções de minimização e/ou maximização de objetivos. O processo de otimização dos modelos de simulação tem que lidar com o problema do aumento exponencial do espaço de busca por soluções, enquanto o número de variáveis de decisão cresce linearmente, tornando a resolução desse problema muito difícil ou impossível, no que tange a avaliação de todas as possíveis combinações quando não há tempo e/ou recurso computacional suficientes para tal. Com o aumento da complexidade referente à quantidade de possíveis soluções a serem consideradas pelos agentes tomadores de decisão, a área do conhecimento referente à Pesquisa Operacional tem aplicado técnicas tradicionalmente geradas para resolver problemas de otimização combinatória, em problemas de simulação a eventos discretos. A exemplo de tais técnicas de otimização, as metaheurísticas têm sido utilizadas com sucesso desde a origem dos primeiros métodos de otimização. Um fator restritivo na utilização destes métodos de otimização em simulação a eventos discretos é que para a realização do teste da qualidade de uma dada possível solução, em geral é necessário a utilização de um software simulador. Assim, ocorre que mesmo com o uso de método de otimização, muito tempo é dispendido para a obtenção de uma boa solução, pelo fato de ser necessário chamar recursivamente o simulador. Com o intuito de minimizar esse efeito, a presente tese associou quatro abordagens para a diminuição do tempo de resposta necessário para se obter boas soluções para a otimização de modelos de simulação a eventos discretos, utilizando de metamodelagem por aprendizagem de máquina e paralelismo de soluções, associadas a metaheurísticas de busca populacional. Neste contexto, foi possível a integração de todos estes conceitos em um mesmo ambiente, aplicando a mesma em três objetos de estudo referentes a problemas da Engenharia de Produção. Um ambiente de otimização open source foi construído em Python para a integração dos três objetos de estudo considerando 33 métodos de aprendizagem de máquina, duas metaheurística e paralelismo do processamento dos cenários. Como resultado médio do método proposto, foi possível a redução do tempo computacional em 93,5% em comparação ao método tradicional, com a utilização apenas de otimização por metaheurística, obtendo uma solução igual a 87,5% do valor de referência dos objetos de estudo.Proposta de redução do tempo computacional em problemas de otimização via Simulação a Eventos Discretos integrando Metaheurísticas, aprendizagem de máquina e paralelismo.info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisItajubáUniversidade Federal de Itajubá190 p.Simulação a eventos discretosOtimização via simulaçãoMetaheurísticaAprendizagem de máquinaParalelismoDiscrete event simulationOptimization via SimulationMetaheuristicsMachine learningParallelismMONTEVECHI, José Arnaldo BarraMIRANDA, Rafael de CarvalhoEngenharia de ProduçãoEngenharia de ProduçãoSOUZA JUNIOR, Wilson Trigueiro dePrograma de Pós-Graduação: Doutorado - Engenharia de ProduçãoIEPG - Instituto de Engenharia de Produção e Gestãoporreponame:Repositório Institucional da UNIFEI (RIUNIFEI)instname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIinfo:eu-repo/semantics/openAccessORIGINALtese_2019016.pdftese_2019016.pdfapplication/pdf3666911https://repositorio.unifei.edu.br/jspui/bitstream/123456789/1996/1/tese_2019016.pdf03cbc20373a0b5adfb277c5cecfc165bMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.unifei.edu.br/jspui/bitstream/123456789/1996/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52123456789/19962024-02-20 12:01:22.194oai:repositorio.unifei.edu.br:123456789/1996Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://repositorio.unifei.edu.br/oai/requestrepositorio@unifei.edu.br || geraldocarlos@unifei.edu.bropendoar:70442024-02-20T15:01:22Repositório Institucional da UNIFEI (RIUNIFEI) - Universidade Federal de Itajubá (UNIFEI)false
dc.title.pt_BR.fl_str_mv Proposta de redução do tempo computacional em problemas de otimização via Simulação a Eventos Discretos integrando Metaheurísticas, aprendizagem de máquina e paralelismo.
title Proposta de redução do tempo computacional em problemas de otimização via Simulação a Eventos Discretos integrando Metaheurísticas, aprendizagem de máquina e paralelismo.
spellingShingle Proposta de redução do tempo computacional em problemas de otimização via Simulação a Eventos Discretos integrando Metaheurísticas, aprendizagem de máquina e paralelismo.
SOUZA JUNIOR, Wilson Trigueiro de
title_short Proposta de redução do tempo computacional em problemas de otimização via Simulação a Eventos Discretos integrando Metaheurísticas, aprendizagem de máquina e paralelismo.
title_full Proposta de redução do tempo computacional em problemas de otimização via Simulação a Eventos Discretos integrando Metaheurísticas, aprendizagem de máquina e paralelismo.
title_fullStr Proposta de redução do tempo computacional em problemas de otimização via Simulação a Eventos Discretos integrando Metaheurísticas, aprendizagem de máquina e paralelismo.
title_full_unstemmed Proposta de redução do tempo computacional em problemas de otimização via Simulação a Eventos Discretos integrando Metaheurísticas, aprendizagem de máquina e paralelismo.
title_sort Proposta de redução do tempo computacional em problemas de otimização via Simulação a Eventos Discretos integrando Metaheurísticas, aprendizagem de máquina e paralelismo.
author SOUZA JUNIOR, Wilson Trigueiro de
author_facet SOUZA JUNIOR, Wilson Trigueiro de
author_role author
dc.contributor.author.fl_str_mv SOUZA JUNIOR, Wilson Trigueiro de
description As técnicas de simulação a eventos discretos têm sido empregadas em diversos setores industriais nas últimas décadas. Isso se tornou possível com a popularização de recursos computacionais e conhecimentos estatísticos aplicados na produção de bens e serviços. Um propósito recorrente ao se gerar uma simulação é a avaliação de uma grande quantidade de cenários, a fim de se encontrar uma relação ótima da combinação de variáveis para se atender restrições e funções de minimização e/ou maximização de objetivos. O processo de otimização dos modelos de simulação tem que lidar com o problema do aumento exponencial do espaço de busca por soluções, enquanto o número de variáveis de decisão cresce linearmente, tornando a resolução desse problema muito difícil ou impossível, no que tange a avaliação de todas as possíveis combinações quando não há tempo e/ou recurso computacional suficientes para tal. Com o aumento da complexidade referente à quantidade de possíveis soluções a serem consideradas pelos agentes tomadores de decisão, a área do conhecimento referente à Pesquisa Operacional tem aplicado técnicas tradicionalmente geradas para resolver problemas de otimização combinatória, em problemas de simulação a eventos discretos. A exemplo de tais técnicas de otimização, as metaheurísticas têm sido utilizadas com sucesso desde a origem dos primeiros métodos de otimização. Um fator restritivo na utilização destes métodos de otimização em simulação a eventos discretos é que para a realização do teste da qualidade de uma dada possível solução, em geral é necessário a utilização de um software simulador. Assim, ocorre que mesmo com o uso de método de otimização, muito tempo é dispendido para a obtenção de uma boa solução, pelo fato de ser necessário chamar recursivamente o simulador. Com o intuito de minimizar esse efeito, a presente tese associou quatro abordagens para a diminuição do tempo de resposta necessário para se obter boas soluções para a otimização de modelos de simulação a eventos discretos, utilizando de metamodelagem por aprendizagem de máquina e paralelismo de soluções, associadas a metaheurísticas de busca populacional. Neste contexto, foi possível a integração de todos estes conceitos em um mesmo ambiente, aplicando a mesma em três objetos de estudo referentes a problemas da Engenharia de Produção. Um ambiente de otimização open source foi construído em Python para a integração dos três objetos de estudo considerando 33 métodos de aprendizagem de máquina, duas metaheurística e paralelismo do processamento dos cenários. Como resultado médio do método proposto, foi possível a redução do tempo computacional em 93,5% em comparação ao método tradicional, com a utilização apenas de otimização por metaheurística, obtendo uma solução igual a 87,5% do valor de referência dos objetos de estudo.
publishDate 2019
dc.date.issued.fl_str_mv 2019-07-05
dc.date.available.fl_str_mv 2019-08-16T18:58:05Z
dc.date.accessioned.fl_str_mv 2019-08-16T18:58:05Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SOUZA JÚNIOR, Wilson Trigueiro de. Proposta de redução do tempo computacional em problemas de otimização via Simulação a Eventos Discretos integrando Metaheurísticas, aprendizagem de máquina e paralelismo. 2019. 190 f. Tese (Doutorado em Engenharia de Produção) – Universidade Federal de Itajubá, Itajubá, 2019.
dc.identifier.uri.fl_str_mv https://repositorio.unifei.edu.br/jspui/handle/123456789/1996
identifier_str_mv SOUZA JÚNIOR, Wilson Trigueiro de. Proposta de redução do tempo computacional em problemas de otimização via Simulação a Eventos Discretos integrando Metaheurísticas, aprendizagem de máquina e paralelismo. 2019. 190 f. Tese (Doutorado em Engenharia de Produção) – Universidade Federal de Itajubá, Itajubá, 2019.
url https://repositorio.unifei.edu.br/jspui/handle/123456789/1996
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.program.fl_str_mv Programa de Pós-Graduação: Doutorado - Engenharia de Produção
dc.publisher.department.fl_str_mv IEPG - Instituto de Engenharia de Produção e Gestão
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNIFEI (RIUNIFEI)
instname:Universidade Federal de Itajubá (UNIFEI)
instacron:UNIFEI
instname_str Universidade Federal de Itajubá (UNIFEI)
instacron_str UNIFEI
institution UNIFEI
reponame_str Repositório Institucional da UNIFEI (RIUNIFEI)
collection Repositório Institucional da UNIFEI (RIUNIFEI)
bitstream.url.fl_str_mv https://repositorio.unifei.edu.br/jspui/bitstream/123456789/1996/1/tese_2019016.pdf
https://repositorio.unifei.edu.br/jspui/bitstream/123456789/1996/2/license.txt
bitstream.checksum.fl_str_mv 03cbc20373a0b5adfb277c5cecfc165b
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UNIFEI (RIUNIFEI) - Universidade Federal de Itajubá (UNIFEI)
repository.mail.fl_str_mv repositorio@unifei.edu.br || geraldocarlos@unifei.edu.br
_version_ 1801863214045069312