Otimização irrestrita mono-objetivo por enxame de partículas assistida por polinômios canônicos de misturas.

Detalhes bibliográficos
Autor(a) principal: PINTO, Wesley Gabriel de Mendonça
Data de Publicação: 2018
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UNIFEI (RIUNIFEI)
Texto Completo: https://repositorio.unifei.edu.br/jspui/handle/123456789/1430
Resumo: A dificuldade de encontrar soluções eficientes para problemas complexos de otimização tem levado diversos pesquisadores a desenvolverem e utilizarem ferramentas computacionais como algoritmos, a fim de auxiliar na resolução de problemas de otimização. Uma das dificuldades encontradas para se utilizar um algoritmo de otimização é a maneira como se deve configurá-lo, uma vez que, configurado de modo incorreto pode influenciar no desempenho do algoritmo, levando-o a soluções inviáveis. Desta forma, o presente trabalho tem por objetivo melhorar a performance de um algoritmo de otimização conhecido como enxame de partículas (PSO), visando calibrar os parâmetros de configuração do algoritmo, com intuito de encontrar um ajuste próximo do ideal melhorando a eficiência e eficácia deste otimizador. Para tal, foi aplicado um método denominado planejamento de experimentos (DoE), que possibilita encontrar parâmetros significativos que influenciam na performance do ambiente modelado, além de proporcionar soluções viáveis para resolução final de determinados sistemas. O procedimento proposto foi aplicado na otimização das funções esférica, rosenbrock e rastrigin, respectivamente, por se tratarem de funções contínuas, de sentido de minimização para otimização e duas dimensões. A utilização deste procedimento proporcionou uma nova configuração aos parâmetros do algoritmo enxame de partícula (PSO), ou seja, cada função de teste utilizada recebeu parâmetros únicos após a otimização do algoritmo. Dessa forma, as respostas tempo e número de iteração coletadas de cada função apresentou resultados significativos quanto aos parâmetros encontrados por essa otimização do PSO em relação aos parâmetros sugeridos pela literatura.
id UFEI_f1b12a49778f647f283a5fea2c16aed5
oai_identifier_str oai:repositorio.unifei.edu.br:123456789/1430
network_acronym_str UFEI
network_name_str Repositório Institucional da UNIFEI (RIUNIFEI)
repository_id_str 7044
spelling 2018-04-272018-06-29T18:22:01Z2018-06-29T18:22:01ZPINTO, Wesley Gabriel de Mendonça. Otimização irrestrita mono-objetivo por enxame de partículas assistida por polinômios canônicos de misturas. 2018. 114 f. Dissertação (Mestrado em Engenharia de Produção) – Universidade Federal de Itajubá, Itajubá, 2018.https://repositorio.unifei.edu.br/jspui/handle/123456789/1430A dificuldade de encontrar soluções eficientes para problemas complexos de otimização tem levado diversos pesquisadores a desenvolverem e utilizarem ferramentas computacionais como algoritmos, a fim de auxiliar na resolução de problemas de otimização. Uma das dificuldades encontradas para se utilizar um algoritmo de otimização é a maneira como se deve configurá-lo, uma vez que, configurado de modo incorreto pode influenciar no desempenho do algoritmo, levando-o a soluções inviáveis. Desta forma, o presente trabalho tem por objetivo melhorar a performance de um algoritmo de otimização conhecido como enxame de partículas (PSO), visando calibrar os parâmetros de configuração do algoritmo, com intuito de encontrar um ajuste próximo do ideal melhorando a eficiência e eficácia deste otimizador. Para tal, foi aplicado um método denominado planejamento de experimentos (DoE), que possibilita encontrar parâmetros significativos que influenciam na performance do ambiente modelado, além de proporcionar soluções viáveis para resolução final de determinados sistemas. O procedimento proposto foi aplicado na otimização das funções esférica, rosenbrock e rastrigin, respectivamente, por se tratarem de funções contínuas, de sentido de minimização para otimização e duas dimensões. A utilização deste procedimento proporcionou uma nova configuração aos parâmetros do algoritmo enxame de partícula (PSO), ou seja, cada função de teste utilizada recebeu parâmetros únicos após a otimização do algoritmo. Dessa forma, as respostas tempo e número de iteração coletadas de cada função apresentou resultados significativos quanto aos parâmetros encontrados por essa otimização do PSO em relação aos parâmetros sugeridos pela literatura.Otimização irrestrita mono-objetivo por enxame de partículas assistida por polinômios canônicos de misturas.info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisItajubáUniversidade Federal de Itajubá114 p.OtimizaçãoPlanejamento de experimentosComputação evolucionáriaEnxame de partículasEvolutionary computationParticle swarmDesign of experimentsOptimizationPAIVA, Anderson Paulo deEngenharia de ProduçãoEngenharia de ProduçãoPINTO, Wesley Gabriel de MendonçaPrograma de Pós-Graduação: Mestrado - Engenharia de ProduçãoIEPG - Instituto de Engenharia de Produção e Gestãoporreponame:Repositório Institucional da UNIFEI (RIUNIFEI)instname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIinfo:eu-repo/semantics/openAccessORIGINALdissertacao_2018077.pdfdissertacao_2018077.pdfapplication/pdf3795334https://repositorio.unifei.edu.br/jspui/bitstream/123456789/1430/1/dissertacao_2018077.pdf16a31c4b3f6ecb32aabdf44d4aba9c19MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.unifei.edu.br/jspui/bitstream/123456789/1430/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52123456789/14302024-02-16 12:54:08.909oai:repositorio.unifei.edu.br:123456789/1430Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://repositorio.unifei.edu.br/oai/requestrepositorio@unifei.edu.br || geraldocarlos@unifei.edu.bropendoar:70442024-02-16T15:54:08Repositório Institucional da UNIFEI (RIUNIFEI) - Universidade Federal de Itajubá (UNIFEI)false
dc.title.pt_BR.fl_str_mv Otimização irrestrita mono-objetivo por enxame de partículas assistida por polinômios canônicos de misturas.
title Otimização irrestrita mono-objetivo por enxame de partículas assistida por polinômios canônicos de misturas.
spellingShingle Otimização irrestrita mono-objetivo por enxame de partículas assistida por polinômios canônicos de misturas.
PINTO, Wesley Gabriel de Mendonça
title_short Otimização irrestrita mono-objetivo por enxame de partículas assistida por polinômios canônicos de misturas.
title_full Otimização irrestrita mono-objetivo por enxame de partículas assistida por polinômios canônicos de misturas.
title_fullStr Otimização irrestrita mono-objetivo por enxame de partículas assistida por polinômios canônicos de misturas.
title_full_unstemmed Otimização irrestrita mono-objetivo por enxame de partículas assistida por polinômios canônicos de misturas.
title_sort Otimização irrestrita mono-objetivo por enxame de partículas assistida por polinômios canônicos de misturas.
author PINTO, Wesley Gabriel de Mendonça
author_facet PINTO, Wesley Gabriel de Mendonça
author_role author
dc.contributor.author.fl_str_mv PINTO, Wesley Gabriel de Mendonça
description A dificuldade de encontrar soluções eficientes para problemas complexos de otimização tem levado diversos pesquisadores a desenvolverem e utilizarem ferramentas computacionais como algoritmos, a fim de auxiliar na resolução de problemas de otimização. Uma das dificuldades encontradas para se utilizar um algoritmo de otimização é a maneira como se deve configurá-lo, uma vez que, configurado de modo incorreto pode influenciar no desempenho do algoritmo, levando-o a soluções inviáveis. Desta forma, o presente trabalho tem por objetivo melhorar a performance de um algoritmo de otimização conhecido como enxame de partículas (PSO), visando calibrar os parâmetros de configuração do algoritmo, com intuito de encontrar um ajuste próximo do ideal melhorando a eficiência e eficácia deste otimizador. Para tal, foi aplicado um método denominado planejamento de experimentos (DoE), que possibilita encontrar parâmetros significativos que influenciam na performance do ambiente modelado, além de proporcionar soluções viáveis para resolução final de determinados sistemas. O procedimento proposto foi aplicado na otimização das funções esférica, rosenbrock e rastrigin, respectivamente, por se tratarem de funções contínuas, de sentido de minimização para otimização e duas dimensões. A utilização deste procedimento proporcionou uma nova configuração aos parâmetros do algoritmo enxame de partícula (PSO), ou seja, cada função de teste utilizada recebeu parâmetros únicos após a otimização do algoritmo. Dessa forma, as respostas tempo e número de iteração coletadas de cada função apresentou resultados significativos quanto aos parâmetros encontrados por essa otimização do PSO em relação aos parâmetros sugeridos pela literatura.
publishDate 2018
dc.date.issued.fl_str_mv 2018-04-27
dc.date.available.fl_str_mv 2018-06-29T18:22:01Z
dc.date.accessioned.fl_str_mv 2018-06-29T18:22:01Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv PINTO, Wesley Gabriel de Mendonça. Otimização irrestrita mono-objetivo por enxame de partículas assistida por polinômios canônicos de misturas. 2018. 114 f. Dissertação (Mestrado em Engenharia de Produção) – Universidade Federal de Itajubá, Itajubá, 2018.
dc.identifier.uri.fl_str_mv https://repositorio.unifei.edu.br/jspui/handle/123456789/1430
identifier_str_mv PINTO, Wesley Gabriel de Mendonça. Otimização irrestrita mono-objetivo por enxame de partículas assistida por polinômios canônicos de misturas. 2018. 114 f. Dissertação (Mestrado em Engenharia de Produção) – Universidade Federal de Itajubá, Itajubá, 2018.
url https://repositorio.unifei.edu.br/jspui/handle/123456789/1430
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.program.fl_str_mv Programa de Pós-Graduação: Mestrado - Engenharia de Produção
dc.publisher.department.fl_str_mv IEPG - Instituto de Engenharia de Produção e Gestão
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNIFEI (RIUNIFEI)
instname:Universidade Federal de Itajubá (UNIFEI)
instacron:UNIFEI
instname_str Universidade Federal de Itajubá (UNIFEI)
instacron_str UNIFEI
institution UNIFEI
reponame_str Repositório Institucional da UNIFEI (RIUNIFEI)
collection Repositório Institucional da UNIFEI (RIUNIFEI)
bitstream.url.fl_str_mv https://repositorio.unifei.edu.br/jspui/bitstream/123456789/1430/1/dissertacao_2018077.pdf
https://repositorio.unifei.edu.br/jspui/bitstream/123456789/1430/2/license.txt
bitstream.checksum.fl_str_mv 16a31c4b3f6ecb32aabdf44d4aba9c19
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UNIFEI (RIUNIFEI) - Universidade Federal de Itajubá (UNIFEI)
repository.mail.fl_str_mv repositorio@unifei.edu.br || geraldocarlos@unifei.edu.br
_version_ 1801863227013857280