Otimização baseada em metamodelos: uma abordagem para metamodelagem em simulação a eventos discretos
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UNIFEI (RIUNIFEI) |
Texto Completo: | https://repositorio.unifei.edu.br/jspui/handle/123456789/2288 |
Resumo: | No contexto da indústria 4.0, a otimização via simulação (OvS) surge como uma das mais potentes ferramentas da indústria moderna, permitindo aos decisores alocarem seus recursos de forma mais assertiva. Todavia, em sistemas muito complexos, o uso de técnicas convencionais de OvS demandam um tempo computacional que, muitas vezes, inviabiliza sua aplicação. Nos últimos anos, o desenvolvimento na área de machine learning surgiram algoritmos com alta capacidade de aprendizado, tornando o uso das técnicas de otimização via simulação por metamodelagem (OvSM) para solucionar problemas complexos um campo de estudo promissor. Neste sentido, o presente estudo propõe um framework para OvSM embasado nos insights e análises provindos da revisão sistemática de literatura realizada. O framework proposto incorpora o uso de técnicas de simulação a eventos discretos, design of experiments, algoritmos de machine learning, e otimização de hiper-parâmetros via algoritmo genético para problemas de OvS. A fim de validar o framework proposto, esta dissertação testou e comparou seis algoritmos de machine learning (Support Vector Machine, Redes Neurais Artificiais, Gradient-Boosted Trees, Randon Forest, Regressão Polinomial e Gaussian Process) com e sem a etapa de otimização de hiper-parâmetros em dois arranjos experimentais (Latin Hipercube Design e Aleatório) aplicados ao problema de alocação de recursos em três casos reais da indústria. Com a aplicação do método nos objetos de estudo apresentados, os metamodelos de melhor performance obtiveram soluções que atingiram, respectivamente, 100%, 96,17%, e 100% do ótimo local benchmark, demandando, em média, 35,22% menos tempo computacional. Além disto, a incorporação da etapa de otimização de hiper-parâmetros no método de metamodelagem proposto permitiu uma redução de 31,28% no root mean square error dos metamodelos se comparado ao método tradicional, que não contempla esta etapa. |
id |
UFEI_ff0637f376216c13e16f04edc03a3f0f |
---|---|
oai_identifier_str |
oai:repositorio.unifei.edu.br:123456789/2288 |
network_acronym_str |
UFEI |
network_name_str |
Repositório Institucional da UNIFEI (RIUNIFEI) |
repository_id_str |
7044 |
spelling |
2021-02-092021-02-142021-02-15T19:03:01Z2021-02-15T19:03:01Zhttps://repositorio.unifei.edu.br/jspui/handle/123456789/2288No contexto da indústria 4.0, a otimização via simulação (OvS) surge como uma das mais potentes ferramentas da indústria moderna, permitindo aos decisores alocarem seus recursos de forma mais assertiva. Todavia, em sistemas muito complexos, o uso de técnicas convencionais de OvS demandam um tempo computacional que, muitas vezes, inviabiliza sua aplicação. Nos últimos anos, o desenvolvimento na área de machine learning surgiram algoritmos com alta capacidade de aprendizado, tornando o uso das técnicas de otimização via simulação por metamodelagem (OvSM) para solucionar problemas complexos um campo de estudo promissor. Neste sentido, o presente estudo propõe um framework para OvSM embasado nos insights e análises provindos da revisão sistemática de literatura realizada. O framework proposto incorpora o uso de técnicas de simulação a eventos discretos, design of experiments, algoritmos de machine learning, e otimização de hiper-parâmetros via algoritmo genético para problemas de OvS. A fim de validar o framework proposto, esta dissertação testou e comparou seis algoritmos de machine learning (Support Vector Machine, Redes Neurais Artificiais, Gradient-Boosted Trees, Randon Forest, Regressão Polinomial e Gaussian Process) com e sem a etapa de otimização de hiper-parâmetros em dois arranjos experimentais (Latin Hipercube Design e Aleatório) aplicados ao problema de alocação de recursos em três casos reais da indústria. Com a aplicação do método nos objetos de estudo apresentados, os metamodelos de melhor performance obtiveram soluções que atingiram, respectivamente, 100%, 96,17%, e 100% do ótimo local benchmark, demandando, em média, 35,22% menos tempo computacional. Além disto, a incorporação da etapa de otimização de hiper-parâmetros no método de metamodelagem proposto permitiu uma redução de 31,28% no root mean square error dos metamodelos se comparado ao método tradicional, que não contempla esta etapa.In the context of industry 4.0, optimization via simulation (OvS) emerges as one of the most powerful tools in the modern industry, allowing decision-makers to allocate their resources more assertively. However, in very complex systems, the use of conventional OvS techniques requires computational time, which frequently, makes its application unfeasible. In recent years, the development in the machine learning area has emerged algorithms with high learning capacity, making the use of optimization via simulation by metamodeling (OvSM) techniques to solve complex problems a promising field of study. In this sense, the present study proposes a framework for OvSM based on the insights and analyses derived from the systematic literature review carried out. The proposed framework incorporates the use of discrete event simulation techniques, design of experiments, machine learning algorithms, and hyper-parameter optimization via genetic algorithm for OvS problems. To validate the proposed method, this dissertation tested and compared six machine learning algorithms (Support Vector Machine, Artificial Neural Networks, Gradient-Boosted Trees, Randon Forest, Polynomial Regression, and Gaussian Process) with and without the hyper optimization step -parameters in two experimental arrangements (Latin Hypercube Design and Random) applied to the problem of resource allocation in three real cases in the industry. With the application of the method in the study objects presented, the best performing metamodels obtained solutions that reached, respectively, 100%, 96.17%, and 100% of the optimal benchmark location, demanding, on average, 35.22% less time computational. Also, the incorporation of the hyper-parameter optimization step in the proposed metamodeling method allowed a 31.28% reduction in the root mean square error of the metamodels compared to the traditional method, which does not include this step.Agência 1porUniversidade Federal de ItajubáPrograma de Pós-Graduação: Mestrado - Engenharia de ProduçãoUNIFEIBrasilIEPG - Instituto de Engenharia de Produção e GestãoCNPQ::ENGENHARIAS::ENGENHARIA DE PRODUÇÃOSimulação a eventos discretosOtimização via simulaçãoMetamodelagemMachine learningDesign of experimentsFrameworkOtimização baseada em metamodelos: uma abordagem para metamodelagem em simulação a eventos discretosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisMONTEVECHI, José Arnaldo Barrahttp://lattes.cnpq.br/2169751971927037MIRANDA, Rafael de Carvalhohttp://lattes.cnpq.br/4478766390160865http://lattes.cnpq.br/0938610135560054AMARAL, João Victor Soares doAMARAL, João Victor Soares do. Otimização baseada em metamodelos: uma abordagem para metamodelagem em simulação a eventos discretos. 2020. 148 f. Dissertação (Mestrado em Engenharia de Produção) – Universidade Federal de Itajubá, Itajubá, 2020.info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNIFEI (RIUNIFEI)instname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEILICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.unifei.edu.br/jspui/bitstream/123456789/2288/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINALDissertação_2021022.pdfDissertação_2021022.pdfapplication/pdf2821569https://repositorio.unifei.edu.br/jspui/bitstream/123456789/2288/1/Disserta%c3%a7%c3%a3o_2021022.pdff2c4cb56cc54b5752004f20c91fa2c0cMD51123456789/22882021-02-15 16:03:04.135oai:repositorio.unifei.edu.br:123456789/2288Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://repositorio.unifei.edu.br/oai/requestrepositorio@unifei.edu.br || geraldocarlos@unifei.edu.bropendoar:70442021-02-15T19:03:04Repositório Institucional da UNIFEI (RIUNIFEI) - Universidade Federal de Itajubá (UNIFEI)false |
dc.title.pt_BR.fl_str_mv |
Otimização baseada em metamodelos: uma abordagem para metamodelagem em simulação a eventos discretos |
title |
Otimização baseada em metamodelos: uma abordagem para metamodelagem em simulação a eventos discretos |
spellingShingle |
Otimização baseada em metamodelos: uma abordagem para metamodelagem em simulação a eventos discretos AMARAL, João Victor Soares do CNPQ::ENGENHARIAS::ENGENHARIA DE PRODUÇÃO Simulação a eventos discretos Otimização via simulação Metamodelagem Machine learning Design of experiments Framework |
title_short |
Otimização baseada em metamodelos: uma abordagem para metamodelagem em simulação a eventos discretos |
title_full |
Otimização baseada em metamodelos: uma abordagem para metamodelagem em simulação a eventos discretos |
title_fullStr |
Otimização baseada em metamodelos: uma abordagem para metamodelagem em simulação a eventos discretos |
title_full_unstemmed |
Otimização baseada em metamodelos: uma abordagem para metamodelagem em simulação a eventos discretos |
title_sort |
Otimização baseada em metamodelos: uma abordagem para metamodelagem em simulação a eventos discretos |
author |
AMARAL, João Victor Soares do |
author_facet |
AMARAL, João Victor Soares do |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
MONTEVECHI, José Arnaldo Barra |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/2169751971927037 |
dc.contributor.advisor-co1.fl_str_mv |
MIRANDA, Rafael de Carvalho |
dc.contributor.advisor-co1Lattes.fl_str_mv |
http://lattes.cnpq.br/4478766390160865 |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/0938610135560054 |
dc.contributor.author.fl_str_mv |
AMARAL, João Victor Soares do |
contributor_str_mv |
MONTEVECHI, José Arnaldo Barra MIRANDA, Rafael de Carvalho |
dc.subject.cnpq.fl_str_mv |
CNPQ::ENGENHARIAS::ENGENHARIA DE PRODUÇÃO |
topic |
CNPQ::ENGENHARIAS::ENGENHARIA DE PRODUÇÃO Simulação a eventos discretos Otimização via simulação Metamodelagem Machine learning Design of experiments Framework |
dc.subject.por.fl_str_mv |
Simulação a eventos discretos Otimização via simulação Metamodelagem Machine learning Design of experiments Framework |
description |
No contexto da indústria 4.0, a otimização via simulação (OvS) surge como uma das mais potentes ferramentas da indústria moderna, permitindo aos decisores alocarem seus recursos de forma mais assertiva. Todavia, em sistemas muito complexos, o uso de técnicas convencionais de OvS demandam um tempo computacional que, muitas vezes, inviabiliza sua aplicação. Nos últimos anos, o desenvolvimento na área de machine learning surgiram algoritmos com alta capacidade de aprendizado, tornando o uso das técnicas de otimização via simulação por metamodelagem (OvSM) para solucionar problemas complexos um campo de estudo promissor. Neste sentido, o presente estudo propõe um framework para OvSM embasado nos insights e análises provindos da revisão sistemática de literatura realizada. O framework proposto incorpora o uso de técnicas de simulação a eventos discretos, design of experiments, algoritmos de machine learning, e otimização de hiper-parâmetros via algoritmo genético para problemas de OvS. A fim de validar o framework proposto, esta dissertação testou e comparou seis algoritmos de machine learning (Support Vector Machine, Redes Neurais Artificiais, Gradient-Boosted Trees, Randon Forest, Regressão Polinomial e Gaussian Process) com e sem a etapa de otimização de hiper-parâmetros em dois arranjos experimentais (Latin Hipercube Design e Aleatório) aplicados ao problema de alocação de recursos em três casos reais da indústria. Com a aplicação do método nos objetos de estudo apresentados, os metamodelos de melhor performance obtiveram soluções que atingiram, respectivamente, 100%, 96,17%, e 100% do ótimo local benchmark, demandando, em média, 35,22% menos tempo computacional. Além disto, a incorporação da etapa de otimização de hiper-parâmetros no método de metamodelagem proposto permitiu uma redução de 31,28% no root mean square error dos metamodelos se comparado ao método tradicional, que não contempla esta etapa. |
publishDate |
2021 |
dc.date.issued.fl_str_mv |
2021-02-09 |
dc.date.available.fl_str_mv |
2021-02-14 2021-02-15T19:03:01Z |
dc.date.accessioned.fl_str_mv |
2021-02-15T19:03:01Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.unifei.edu.br/jspui/handle/123456789/2288 |
url |
https://repositorio.unifei.edu.br/jspui/handle/123456789/2288 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.references.pt_BR.fl_str_mv |
AMARAL, João Victor Soares do. Otimização baseada em metamodelos: uma abordagem para metamodelagem em simulação a eventos discretos. 2020. 148 f. Dissertação (Mestrado em Engenharia de Produção) – Universidade Federal de Itajubá, Itajubá, 2020. |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Itajubá |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação: Mestrado - Engenharia de Produção |
dc.publisher.initials.fl_str_mv |
UNIFEI |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
IEPG - Instituto de Engenharia de Produção e Gestão |
publisher.none.fl_str_mv |
Universidade Federal de Itajubá |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UNIFEI (RIUNIFEI) instname:Universidade Federal de Itajubá (UNIFEI) instacron:UNIFEI |
instname_str |
Universidade Federal de Itajubá (UNIFEI) |
instacron_str |
UNIFEI |
institution |
UNIFEI |
reponame_str |
Repositório Institucional da UNIFEI (RIUNIFEI) |
collection |
Repositório Institucional da UNIFEI (RIUNIFEI) |
bitstream.url.fl_str_mv |
https://repositorio.unifei.edu.br/jspui/bitstream/123456789/2288/2/license.txt https://repositorio.unifei.edu.br/jspui/bitstream/123456789/2288/1/Disserta%c3%a7%c3%a3o_2021022.pdf |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 f2c4cb56cc54b5752004f20c91fa2c0c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UNIFEI (RIUNIFEI) - Universidade Federal de Itajubá (UNIFEI) |
repository.mail.fl_str_mv |
repositorio@unifei.edu.br || geraldocarlos@unifei.edu.br |
_version_ |
1801863205532729344 |