PERFORMANCE ANALYSIS AND CARCASS CHARACTERISTICS OF SANTA INÊS SHEEP USING MULTIVARIATE TECHNICS

Detalhes bibliográficos
Autor(a) principal: Milanês, Tarlan Oliveira
Data de Publicação: 2020
Outros Autores: Soares, Luciana Felizardo Pereira, Ribeiro, Maria Norma, Carvalho, Francisco Fernando Ramos de
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Revista Caatinga
Texto Completo: https://periodicos.ufersa.edu.br/caatinga/article/view/8946
Resumo: The objective of this study was to apply multivariate analysis techniques such as principal component and canonical discriminant analyses to a set of performance and carcass data of Santa Inês sheep, to identify the relationships and select the variables that best explain the total variation of the data, in addition to quantifying an association between performance and carcass characteristics. The main components generated were efficient in reducing a cumulative total variation of 25 original variables correlated to four linear combinations, which together explained 80% of the total variation of the data. The first two principal components together explained approximately 65% of the total variation of the variables analyzed. In the first two linear combinations, the characteristics with the highest factor loading coefficients were cold carcass weight (CCW), hot carcass weight (HCW), empty body weight (EBW), average weight (AW), croup width (CW), cold carcass yield (CCY), and hot carcass yield (HCY). The variables selected in the canonical discriminant analysis, in order of importance, were total carbohydrate intake (TCI), total digestible nitrogen intake (TDNI), dry matter intake (DMI), non-fibrous carbohydrate intake (NFI), and fiber detergent neutral intake (NDFI). The first canonical root shows a correlation coefficient of approximately 0.82, showing a high association between the performance variables. The classification errors in the discriminant analysis were less than 5%, which were probably due to the similarity between individuals for the studied traits. The multivariate techniques were adequate and efficient in simplifying the sample space and classifying the animals in their original groups.  
id UFERSA-1_2946d89d2bb5e23610c762647d6b30f7
oai_identifier_str oai:ojs.periodicos.ufersa.edu.br:article/8946
network_acronym_str UFERSA-1
network_name_str Revista Caatinga
repository_id_str
spelling PERFORMANCE ANALYSIS AND CARCASS CHARACTERISTICS OF SANTA INÊS SHEEP USING MULTIVARIATE TECHNICSANÁLISE DE DESEMPENHO E DE CARATERÍSTICAS DE CARCAÇA DE OVINOS SANTA INÊS UTILIZANDO TÉCNICAS MULTIVARIADASAnálise discriminante canônica. Componentes principais. Ovinocultura.Canonical discriminant analysis. Principal components. Sheep production.The objective of this study was to apply multivariate analysis techniques such as principal component and canonical discriminant analyses to a set of performance and carcass data of Santa Inês sheep, to identify the relationships and select the variables that best explain the total variation of the data, in addition to quantifying an association between performance and carcass characteristics. The main components generated were efficient in reducing a cumulative total variation of 25 original variables correlated to four linear combinations, which together explained 80% of the total variation of the data. The first two principal components together explained approximately 65% of the total variation of the variables analyzed. In the first two linear combinations, the characteristics with the highest factor loading coefficients were cold carcass weight (CCW), hot carcass weight (HCW), empty body weight (EBW), average weight (AW), croup width (CW), cold carcass yield (CCY), and hot carcass yield (HCY). The variables selected in the canonical discriminant analysis, in order of importance, were total carbohydrate intake (TCI), total digestible nitrogen intake (TDNI), dry matter intake (DMI), non-fibrous carbohydrate intake (NFI), and fiber detergent neutral intake (NDFI). The first canonical root shows a correlation coefficient of approximately 0.82, showing a high association between the performance variables. The classification errors in the discriminant analysis were less than 5%, which were probably due to the similarity between individuals for the studied traits. The multivariate techniques were adequate and efficient in simplifying the sample space and classifying the animals in their original groups.  O objetivo com este estudo foi aplicar técnicas de análise multivariada, sendo elas: Componentes Principais e Discriminante Canônica, em um conjunto de dados de desempenho e carcaça de ovinos da raça Santa Inês. Para identificar as relações e selecionar variáveis que melhor explicam a variação total dos dados, além de quantificar associação entre os recursos de desempenho e carcaça. Os componentes principais gerados foram eficientes em reduzir variação total acumulada de 25 variáveis originais correlacionadas para quatro combinações lineares, que, juntas, tem capacidade de explicar 80% da variação total dos dados. Os dois primeiros componentes principais juntos explicam aproximadamente 65% da variação total das variáveis analisadas. Nessas duas combinações lineares as características com maior coeficiente de ponderação foram PCF (Peso Carcaça Fria), PCQ (Peso Carcaça Quente), PCVZ (Peso Corpo Vazio), Peso Médio, Largura de Garupa, RCF (Rendimento Carcaça Fria) e RCQ (Rendimento Carcaça Quente). As variáveis selecionadas na análise discriminante canônica, em ordem de importância, foram CCHT (Consumo Carboidratos Totais), CNDT (Consumo Nutrientes Digestíveis Totais), CMS (Consumo de Matéria Seca), CCNF (Consumo Carboidrato Não Fibroso) e CFDN (Consumo Fibra Detergente Neutro). A primeira raiz canônica identificada mostra o coeficiente de correlação canônica de aproximadamente 0,82, mostrando alta associação entre as variáveis de desempenho. Os erros de classificação na análise discriminante foram inferiores a 5%, os quais ocorreram provavelmente pela semelhança entre indivíduos quanto as variáveis estudadas. As técnicas multivariadas foram adequadas e eficientes para simplificação do espaço amostral e classificação dos animais em seus grupos de origem.Universidade Federal Rural do Semi-Árido2020-10-23info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.ufersa.edu.br/caatinga/article/view/894610.1590/1983-21252020v33n430rcREVISTA CAATINGA; Vol. 33 No. 4 (2020); 1150-1157Revista Caatinga; v. 33 n. 4 (2020); 1150-11571983-21250100-316Xreponame:Revista Caatingainstname:Universidade Federal Rural do Semi-Árido (UFERSA)instacron:UFERSAenghttps://periodicos.ufersa.edu.br/caatinga/article/view/8946/10382Copyright (c) 2020 Revista Caatingainfo:eu-repo/semantics/openAccessMilanês, Tarlan OliveiraSoares, Luciana Felizardo PereiraRibeiro, Maria NormaCarvalho, Francisco Fernando Ramos de2023-07-21T16:48:45Zoai:ojs.periodicos.ufersa.edu.br:article/8946Revistahttps://periodicos.ufersa.edu.br/index.php/caatinga/indexPUBhttps://periodicos.ufersa.edu.br/index.php/caatinga/oaipatricio@ufersa.edu.br|| caatinga@ufersa.edu.br1983-21250100-316Xopendoar:2024-04-29T09:46:43.852907Revista Caatinga - Universidade Federal Rural do Semi-Árido (UFERSA)true
dc.title.none.fl_str_mv PERFORMANCE ANALYSIS AND CARCASS CHARACTERISTICS OF SANTA INÊS SHEEP USING MULTIVARIATE TECHNICS
ANÁLISE DE DESEMPENHO E DE CARATERÍSTICAS DE CARCAÇA DE OVINOS SANTA INÊS UTILIZANDO TÉCNICAS MULTIVARIADAS
title PERFORMANCE ANALYSIS AND CARCASS CHARACTERISTICS OF SANTA INÊS SHEEP USING MULTIVARIATE TECHNICS
spellingShingle PERFORMANCE ANALYSIS AND CARCASS CHARACTERISTICS OF SANTA INÊS SHEEP USING MULTIVARIATE TECHNICS
Milanês, Tarlan Oliveira
Análise discriminante canônica. Componentes principais. Ovinocultura.
Canonical discriminant analysis. Principal components. Sheep production.
title_short PERFORMANCE ANALYSIS AND CARCASS CHARACTERISTICS OF SANTA INÊS SHEEP USING MULTIVARIATE TECHNICS
title_full PERFORMANCE ANALYSIS AND CARCASS CHARACTERISTICS OF SANTA INÊS SHEEP USING MULTIVARIATE TECHNICS
title_fullStr PERFORMANCE ANALYSIS AND CARCASS CHARACTERISTICS OF SANTA INÊS SHEEP USING MULTIVARIATE TECHNICS
title_full_unstemmed PERFORMANCE ANALYSIS AND CARCASS CHARACTERISTICS OF SANTA INÊS SHEEP USING MULTIVARIATE TECHNICS
title_sort PERFORMANCE ANALYSIS AND CARCASS CHARACTERISTICS OF SANTA INÊS SHEEP USING MULTIVARIATE TECHNICS
author Milanês, Tarlan Oliveira
author_facet Milanês, Tarlan Oliveira
Soares, Luciana Felizardo Pereira
Ribeiro, Maria Norma
Carvalho, Francisco Fernando Ramos de
author_role author
author2 Soares, Luciana Felizardo Pereira
Ribeiro, Maria Norma
Carvalho, Francisco Fernando Ramos de
author2_role author
author
author
dc.contributor.author.fl_str_mv Milanês, Tarlan Oliveira
Soares, Luciana Felizardo Pereira
Ribeiro, Maria Norma
Carvalho, Francisco Fernando Ramos de
dc.subject.por.fl_str_mv Análise discriminante canônica. Componentes principais. Ovinocultura.
Canonical discriminant analysis. Principal components. Sheep production.
topic Análise discriminante canônica. Componentes principais. Ovinocultura.
Canonical discriminant analysis. Principal components. Sheep production.
description The objective of this study was to apply multivariate analysis techniques such as principal component and canonical discriminant analyses to a set of performance and carcass data of Santa Inês sheep, to identify the relationships and select the variables that best explain the total variation of the data, in addition to quantifying an association between performance and carcass characteristics. The main components generated were efficient in reducing a cumulative total variation of 25 original variables correlated to four linear combinations, which together explained 80% of the total variation of the data. The first two principal components together explained approximately 65% of the total variation of the variables analyzed. In the first two linear combinations, the characteristics with the highest factor loading coefficients were cold carcass weight (CCW), hot carcass weight (HCW), empty body weight (EBW), average weight (AW), croup width (CW), cold carcass yield (CCY), and hot carcass yield (HCY). The variables selected in the canonical discriminant analysis, in order of importance, were total carbohydrate intake (TCI), total digestible nitrogen intake (TDNI), dry matter intake (DMI), non-fibrous carbohydrate intake (NFI), and fiber detergent neutral intake (NDFI). The first canonical root shows a correlation coefficient of approximately 0.82, showing a high association between the performance variables. The classification errors in the discriminant analysis were less than 5%, which were probably due to the similarity between individuals for the studied traits. The multivariate techniques were adequate and efficient in simplifying the sample space and classifying the animals in their original groups.  
publishDate 2020
dc.date.none.fl_str_mv 2020-10-23
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://periodicos.ufersa.edu.br/caatinga/article/view/8946
10.1590/1983-21252020v33n430rc
url https://periodicos.ufersa.edu.br/caatinga/article/view/8946
identifier_str_mv 10.1590/1983-21252020v33n430rc
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://periodicos.ufersa.edu.br/caatinga/article/view/8946/10382
dc.rights.driver.fl_str_mv Copyright (c) 2020 Revista Caatinga
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2020 Revista Caatinga
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal Rural do Semi-Árido
publisher.none.fl_str_mv Universidade Federal Rural do Semi-Árido
dc.source.none.fl_str_mv REVISTA CAATINGA; Vol. 33 No. 4 (2020); 1150-1157
Revista Caatinga; v. 33 n. 4 (2020); 1150-1157
1983-2125
0100-316X
reponame:Revista Caatinga
instname:Universidade Federal Rural do Semi-Árido (UFERSA)
instacron:UFERSA
instname_str Universidade Federal Rural do Semi-Árido (UFERSA)
instacron_str UFERSA
institution UFERSA
reponame_str Revista Caatinga
collection Revista Caatinga
repository.name.fl_str_mv Revista Caatinga - Universidade Federal Rural do Semi-Árido (UFERSA)
repository.mail.fl_str_mv patricio@ufersa.edu.br|| caatinga@ufersa.edu.br
_version_ 1797674028275597312