GENOTYPE BY ENVIRONMENT INTERACTION IN COWPEA LINES USING GGE BIPLOT METHOD

Detalhes bibliográficos
Autor(a) principal: Sousa, Massaine Bandeira e
Data de Publicação: 2017
Outros Autores: Damasceno-Silva, Kaesel Jackson, Rocha, Maurisrael de Moura, Menezes Júnior, José Ângelo Nogueira de, Lima, Laíze Raphaelle Lemos
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Revista Caatinga
Texto Completo: https://periodicos.ufersa.edu.br/caatinga/article/view/6429
Resumo: The GGE Biplot method is efficien to identify favorable genotypes and ideal environments for evaluation. Therefore, the objective of this work was to evaluate the genotype by environment interaction (G×E) and select elite lines of cowpea from genotypes, which are part of the cultivation and use value tests of the Embrapa Meio-Norte Breeding Program, for regions of the Brazilian Cerrado, by the GGE-Biplot method. The grain yield of 40 cowpea genotypes, 30 lines and 10 cultivars, was evaluated during three years (2010, 2011 and 2012) in three locations: Balsas (BAL), São Raimundo das Mangabeiras (SRM) and Primavera do Leste (PRL). The data were subjected to analysis of variance, and adjusted means were obtained to perform the GGE-Biplot analysis. The graphic results showed variation in the performance of the genotypes in the locations evaluated over the years. The performance of the lines MNC02-675F-4-9 and MNC02-675F-4-10 were considered ideal, with maximum yield and good stability in the locations evaluated. There mega-environments were formed, encompassing environments correlated positively. The lines MNC02-675F-4-9, MNC02-675F-9-3 and MNC02-701F-2 had the best performance within each mega-environment. The environment PRL10 and lines near this environment, such as MNC02-677F-2, MNC02-677F-5 and the control cultivar (BRS-Marataoã) could be classified as those of greater reliability, determined basically by the genotypic effects, with reduced G×E. Most of the environments evaluated were ideal for evaluation of G×E, since the genotypes were well discriminated on them. Therefore, the selection of genotypes with adaptability and superior performance for specific environments through the GGE-Biplot analysis was possible.
id UFERSA-1_467491efb9576438a54d9d1d6f0fe349
oai_identifier_str oai:ojs.periodicos.ufersa.edu.br:article/6429
network_acronym_str UFERSA-1
network_name_str Revista Caatinga
repository_id_str
spelling GENOTYPE BY ENVIRONMENT INTERACTION IN COWPEA LINES USING GGE BIPLOT METHODINTERAÇÃO GENÓTIPOS X AMBIENTES EM LINHAGENS DE FEIJÃO-CAUPI PELO MÉTODO GGE BIPLOTVigna unguiculata. Produtividade de grãos. Adaptabilidade e estabilidade.Vigna unguiculata. Grain yield. Adaptability and stability.The GGE Biplot method is efficien to identify favorable genotypes and ideal environments for evaluation. Therefore, the objective of this work was to evaluate the genotype by environment interaction (G×E) and select elite lines of cowpea from genotypes, which are part of the cultivation and use value tests of the Embrapa Meio-Norte Breeding Program, for regions of the Brazilian Cerrado, by the GGE-Biplot method. The grain yield of 40 cowpea genotypes, 30 lines and 10 cultivars, was evaluated during three years (2010, 2011 and 2012) in three locations: Balsas (BAL), São Raimundo das Mangabeiras (SRM) and Primavera do Leste (PRL). The data were subjected to analysis of variance, and adjusted means were obtained to perform the GGE-Biplot analysis. The graphic results showed variation in the performance of the genotypes in the locations evaluated over the years. The performance of the lines MNC02-675F-4-9 and MNC02-675F-4-10 were considered ideal, with maximum yield and good stability in the locations evaluated. There mega-environments were formed, encompassing environments correlated positively. The lines MNC02-675F-4-9, MNC02-675F-9-3 and MNC02-701F-2 had the best performance within each mega-environment. The environment PRL10 and lines near this environment, such as MNC02-677F-2, MNC02-677F-5 and the control cultivar (BRS-Marataoã) could be classified as those of greater reliability, determined basically by the genotypic effects, with reduced G×E. Most of the environments evaluated were ideal for evaluation of G×E, since the genotypes were well discriminated on them. Therefore, the selection of genotypes with adaptability and superior performance for specific environments through the GGE-Biplot analysis was possible.O método GGE Biplot é eficiente em identificar genótipos favoráveis e ambientes ideais para avaliação. Portanto, o objetivo deste trabalho foi avaliar a interação genótipo por ambientes (G×A) de linhagens elite de feijão-caupi nos ensaios de valor de cultivo e uso (VCU) da Embrapa Meio-Norte, realizados nas regiões de Cerrado do Brasil, por meio de analises via GGE Biplot. Avaliou-se a produtividade de grãos em 40 genótipos de feijão-caupi, sendo 30 linhagens e 10 cultivares, durante três anos (2010, 2011 e 2012) em três locais: Balsas (BAL), São Raimundo das Mangabeiras (SRM) e Primavera do Leste (PRL). Os dados foram submetidos a análises de variância, a partir da qual foram obtidas as médias ajustadas para realizar a análise via GGE-Biplot. Os resultados gráficos revelam que houve variação no comportamento dos genótipos nos locais avaliados ao longo dos anos. As linhagens MNC02-675F-4-9 e MNC02-675F-4-10 apresentaram desempenhos de um genótipo ideal, com máxima produtividade aliada à boa estabilidade nos locais de avaliação. Houve a formação de três mega-ambientes que englobaram ambientes correlacionados positivamente. As linhagens MNC02-675F-4-9, MNC02-675F-9-3 e MNC02-701F-2 apresentaram o melhor desempenho médio dentro de cada mega-ambiente. O ambiente PRL10 e as linhagens próximas a este ambiente, como MNC02-677F-2, MNC02-677F-5 e a cultivar testemunha BRS-Marataoã, puderam ser classificados com maior confiabilidade, determinados basicamente pelos efeitos genotípicos, com G×A reduzida. A maioria dos ambientes avaliados foram ideais para avaliação da G×A, discriminando bem os genótipos. Portanto, a análise GGE-Biplot, permitiu selecionar genótipos com adaptabilidade e desempenhos superiores para ambientes específicos.Universidade Federal Rural do Semi-Árido2017-12-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.ufersa.edu.br/caatinga/article/view/642910.1590/1983-21252018v31n108rcREVISTA CAATINGA; Vol. 31 No. 1 (2018); 64-71Revista Caatinga; v. 31 n. 1 (2018); 64-711983-21250100-316Xreponame:Revista Caatingainstname:Universidade Federal Rural do Semi-Árido (UFERSA)instacron:UFERSAenghttps://periodicos.ufersa.edu.br/caatinga/article/view/6429/pdfCopyright (c) 2017 Revista Caatingainfo:eu-repo/semantics/openAccessSousa, Massaine Bandeira eDamasceno-Silva, Kaesel JacksonRocha, Maurisrael de MouraMenezes Júnior, José Ângelo Nogueira deLima, Laíze Raphaelle Lemos2023-07-20T11:55:27Zoai:ojs.periodicos.ufersa.edu.br:article/6429Revistahttps://periodicos.ufersa.edu.br/index.php/caatinga/indexPUBhttps://periodicos.ufersa.edu.br/index.php/caatinga/oaipatricio@ufersa.edu.br|| caatinga@ufersa.edu.br1983-21250100-316Xopendoar:2024-04-29T09:46:28.333157Revista Caatinga - Universidade Federal Rural do Semi-Árido (UFERSA)true
dc.title.none.fl_str_mv GENOTYPE BY ENVIRONMENT INTERACTION IN COWPEA LINES USING GGE BIPLOT METHOD
INTERAÇÃO GENÓTIPOS X AMBIENTES EM LINHAGENS DE FEIJÃO-CAUPI PELO MÉTODO GGE BIPLOT
title GENOTYPE BY ENVIRONMENT INTERACTION IN COWPEA LINES USING GGE BIPLOT METHOD
spellingShingle GENOTYPE BY ENVIRONMENT INTERACTION IN COWPEA LINES USING GGE BIPLOT METHOD
Sousa, Massaine Bandeira e
Vigna unguiculata. Produtividade de grãos. Adaptabilidade e estabilidade.
Vigna unguiculata. Grain yield. Adaptability and stability.
title_short GENOTYPE BY ENVIRONMENT INTERACTION IN COWPEA LINES USING GGE BIPLOT METHOD
title_full GENOTYPE BY ENVIRONMENT INTERACTION IN COWPEA LINES USING GGE BIPLOT METHOD
title_fullStr GENOTYPE BY ENVIRONMENT INTERACTION IN COWPEA LINES USING GGE BIPLOT METHOD
title_full_unstemmed GENOTYPE BY ENVIRONMENT INTERACTION IN COWPEA LINES USING GGE BIPLOT METHOD
title_sort GENOTYPE BY ENVIRONMENT INTERACTION IN COWPEA LINES USING GGE BIPLOT METHOD
author Sousa, Massaine Bandeira e
author_facet Sousa, Massaine Bandeira e
Damasceno-Silva, Kaesel Jackson
Rocha, Maurisrael de Moura
Menezes Júnior, José Ângelo Nogueira de
Lima, Laíze Raphaelle Lemos
author_role author
author2 Damasceno-Silva, Kaesel Jackson
Rocha, Maurisrael de Moura
Menezes Júnior, José Ângelo Nogueira de
Lima, Laíze Raphaelle Lemos
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Sousa, Massaine Bandeira e
Damasceno-Silva, Kaesel Jackson
Rocha, Maurisrael de Moura
Menezes Júnior, José Ângelo Nogueira de
Lima, Laíze Raphaelle Lemos
dc.subject.por.fl_str_mv Vigna unguiculata. Produtividade de grãos. Adaptabilidade e estabilidade.
Vigna unguiculata. Grain yield. Adaptability and stability.
topic Vigna unguiculata. Produtividade de grãos. Adaptabilidade e estabilidade.
Vigna unguiculata. Grain yield. Adaptability and stability.
description The GGE Biplot method is efficien to identify favorable genotypes and ideal environments for evaluation. Therefore, the objective of this work was to evaluate the genotype by environment interaction (G×E) and select elite lines of cowpea from genotypes, which are part of the cultivation and use value tests of the Embrapa Meio-Norte Breeding Program, for regions of the Brazilian Cerrado, by the GGE-Biplot method. The grain yield of 40 cowpea genotypes, 30 lines and 10 cultivars, was evaluated during three years (2010, 2011 and 2012) in three locations: Balsas (BAL), São Raimundo das Mangabeiras (SRM) and Primavera do Leste (PRL). The data were subjected to analysis of variance, and adjusted means were obtained to perform the GGE-Biplot analysis. The graphic results showed variation in the performance of the genotypes in the locations evaluated over the years. The performance of the lines MNC02-675F-4-9 and MNC02-675F-4-10 were considered ideal, with maximum yield and good stability in the locations evaluated. There mega-environments were formed, encompassing environments correlated positively. The lines MNC02-675F-4-9, MNC02-675F-9-3 and MNC02-701F-2 had the best performance within each mega-environment. The environment PRL10 and lines near this environment, such as MNC02-677F-2, MNC02-677F-5 and the control cultivar (BRS-Marataoã) could be classified as those of greater reliability, determined basically by the genotypic effects, with reduced G×E. Most of the environments evaluated were ideal for evaluation of G×E, since the genotypes were well discriminated on them. Therefore, the selection of genotypes with adaptability and superior performance for specific environments through the GGE-Biplot analysis was possible.
publishDate 2017
dc.date.none.fl_str_mv 2017-12-11
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://periodicos.ufersa.edu.br/caatinga/article/view/6429
10.1590/1983-21252018v31n108rc
url https://periodicos.ufersa.edu.br/caatinga/article/view/6429
identifier_str_mv 10.1590/1983-21252018v31n108rc
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://periodicos.ufersa.edu.br/caatinga/article/view/6429/pdf
dc.rights.driver.fl_str_mv Copyright (c) 2017 Revista Caatinga
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2017 Revista Caatinga
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal Rural do Semi-Árido
publisher.none.fl_str_mv Universidade Federal Rural do Semi-Árido
dc.source.none.fl_str_mv REVISTA CAATINGA; Vol. 31 No. 1 (2018); 64-71
Revista Caatinga; v. 31 n. 1 (2018); 64-71
1983-2125
0100-316X
reponame:Revista Caatinga
instname:Universidade Federal Rural do Semi-Árido (UFERSA)
instacron:UFERSA
instname_str Universidade Federal Rural do Semi-Árido (UFERSA)
instacron_str UFERSA
institution UFERSA
reponame_str Revista Caatinga
collection Revista Caatinga
repository.name.fl_str_mv Revista Caatinga - Universidade Federal Rural do Semi-Árido (UFERSA)
repository.mail.fl_str_mv patricio@ufersa.edu.br|| caatinga@ufersa.edu.br
_version_ 1797674026572709888