ESTIMATION OF PHYSICAL AND CHEMICAL SOIL PROPERTIES BY ARTIFICIAL NEURAL NETWORKS

Detalhes bibliográficos
Autor(a) principal: Bittar, Roberto Dib
Data de Publicação: 2018
Outros Autores: Alves, Sueli Martins de Freitas, Melo, Francisco Ramos de
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Revista Caatinga
DOI: 10.1590/1983-21252018v31n320rc
Texto Completo: https://periodicos.ufersa.edu.br/caatinga/article/view/6853
Resumo: Soil physical and chemical analyses are relatively high-cost and time-consuming procedures. In the search for alternatives to predict these properties from a reduced number of soil samples, the use of Artificial Neural Networks (ANN) has been pointed out as a great computational technique to solve this problem by means of experience. This tool also has the ability to acquire knowledge and then apply it. This study aimed at using ANNs to estimate the physical and chemical properties of soil. The data came from the physical and chemical analysis of 120 sampling points, which were submitted to descriptive analysis, geostatistical analysis, and ANNs training and analysis. In the geostatistical analysis, the semivariogram model that best fitted the experimental variogram was verified for each soil property, and the ordinary kriging was used as an interpolation method. The ANNs were trained and selected based on their assertiveness in the mapping of considered standards, and then used to estimate all soil properties. The mean errors of ordinary kriging estimates were compared to those of ANNs and then compared to the original values using Student's t-Test. The results showed that the ANN had an assertiveness compatible with ordinary kriging. Therefore, such technique is a promising tool to estimate soil properties using a reduced number of soil samples.
id UFERSA-1_5189fb7c0e492d9dfa5b037d288cc90c
oai_identifier_str oai:ojs.periodicos.ufersa.edu.br:article/6853
network_acronym_str UFERSA-1
network_name_str Revista Caatinga
spelling ESTIMATION OF PHYSICAL AND CHEMICAL SOIL PROPERTIES BY ARTIFICIAL NEURAL NETWORKSESTIMATIVAS DE ATRIBUTOS DE FÍSICOS E QUÍMICOS DE SOLO POR MEIO DE REDES NEURAIS ARTIFICIAISInteligência artificial. Geoestatística. Agricultura de precisão. Manejo e conservação do solo.Artificial intelligence. Geostatistics. Precision agriculture. Soil management and conservation.Soil physical and chemical analyses are relatively high-cost and time-consuming procedures. In the search for alternatives to predict these properties from a reduced number of soil samples, the use of Artificial Neural Networks (ANN) has been pointed out as a great computational technique to solve this problem by means of experience. This tool also has the ability to acquire knowledge and then apply it. This study aimed at using ANNs to estimate the physical and chemical properties of soil. The data came from the physical and chemical analysis of 120 sampling points, which were submitted to descriptive analysis, geostatistical analysis, and ANNs training and analysis. In the geostatistical analysis, the semivariogram model that best fitted the experimental variogram was verified for each soil property, and the ordinary kriging was used as an interpolation method. The ANNs were trained and selected based on their assertiveness in the mapping of considered standards, and then used to estimate all soil properties. The mean errors of ordinary kriging estimates were compared to those of ANNs and then compared to the original values using Student's t-Test. The results showed that the ANN had an assertiveness compatible with ordinary kriging. Therefore, such technique is a promising tool to estimate soil properties using a reduced number of soil samples.O estudo das propriedades físicas e químicas do solo é um procedimento de custo e tempo relativamente elevado. Na busca de alternativas para predizer esses atributos a partir de um número menor de amostras do solo, o uso de Redes Neurais Artificiais (RNA) tem sido apontado como uma técnica computacional com grande capacidade de resolver problemas por meio da experiência, e possuem a capacidade de aquisição e posterior aplicação deste conhecimento. Esse trabalho teve por objetivo utilizar a RNA para estimar os atributos físicos e químicos de solo. Os dados utilizados foram provenientes da análise física e química de solo, coletados em 120 pontos amostrais, os quais foram submetidos à análise descritiva, análise geoestatística, treinamento e análise das RNAs. Na análise geoestatística, para cada atributo do solo, foi verificado o modelo de semivariograma que apresentou melhor ajuste ao modelo experimental, e como método de interpolação foi usada técnica da krigagem ordinária. As RNAs foram treinadas, selecionadas considerando a assertividade no mapeamento dos padrões considerados e utilizadas na estimativa de todos dos atributos de solo. O erro médio de cada estimativa obtida pela técnica da krigagem ordinária foi comparado com o erro médio da estimativa obtida pela RNA e, posteriormente foram comparadas com os valores originais por meio do teste-t de Student. Os resultados mostram que a técnica de RNAs apresenta assertividade compatível à krigagem ordinária. O uso da técnica de RNA apresentou-se promissora para obter estimativas de atributos de solo empregando um número menor de amostras de solo.Universidade Federal Rural do Semi-Árido2018-05-28info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.ufersa.edu.br/caatinga/article/view/685310.1590/1983-21252018v31n320rcREVISTA CAATINGA; Vol. 31 No. 3 (2018); 704-712Revista Caatinga; v. 31 n. 3 (2018); 704-7121983-21250100-316Xreponame:Revista Caatingainstname:Universidade Federal Rural do Semi-Árido (UFERSA)instacron:UFERSAenghttps://periodicos.ufersa.edu.br/caatinga/article/view/6853/pdfCopyright (c) 2018 Revista Caatingainfo:eu-repo/semantics/openAccessBittar, Roberto DibAlves, Sueli Martins de FreitasMelo, Francisco Ramos de2023-07-20T13:27:45Zoai:ojs.periodicos.ufersa.edu.br:article/6853Revistahttps://periodicos.ufersa.edu.br/index.php/caatinga/indexPUBhttps://periodicos.ufersa.edu.br/index.php/caatinga/oaipatricio@ufersa.edu.br|| caatinga@ufersa.edu.br1983-21250100-316Xopendoar:2024-04-29T09:46:31.514977Revista Caatinga - Universidade Federal Rural do Semi-Árido (UFERSA)true
dc.title.none.fl_str_mv ESTIMATION OF PHYSICAL AND CHEMICAL SOIL PROPERTIES BY ARTIFICIAL NEURAL NETWORKS
ESTIMATIVAS DE ATRIBUTOS DE FÍSICOS E QUÍMICOS DE SOLO POR MEIO DE REDES NEURAIS ARTIFICIAIS
title ESTIMATION OF PHYSICAL AND CHEMICAL SOIL PROPERTIES BY ARTIFICIAL NEURAL NETWORKS
spellingShingle ESTIMATION OF PHYSICAL AND CHEMICAL SOIL PROPERTIES BY ARTIFICIAL NEURAL NETWORKS
ESTIMATION OF PHYSICAL AND CHEMICAL SOIL PROPERTIES BY ARTIFICIAL NEURAL NETWORKS
Bittar, Roberto Dib
Inteligência artificial. Geoestatística. Agricultura de precisão. Manejo e conservação do solo.
Artificial intelligence. Geostatistics. Precision agriculture. Soil management and conservation.
Bittar, Roberto Dib
Inteligência artificial. Geoestatística. Agricultura de precisão. Manejo e conservação do solo.
Artificial intelligence. Geostatistics. Precision agriculture. Soil management and conservation.
title_short ESTIMATION OF PHYSICAL AND CHEMICAL SOIL PROPERTIES BY ARTIFICIAL NEURAL NETWORKS
title_full ESTIMATION OF PHYSICAL AND CHEMICAL SOIL PROPERTIES BY ARTIFICIAL NEURAL NETWORKS
title_fullStr ESTIMATION OF PHYSICAL AND CHEMICAL SOIL PROPERTIES BY ARTIFICIAL NEURAL NETWORKS
ESTIMATION OF PHYSICAL AND CHEMICAL SOIL PROPERTIES BY ARTIFICIAL NEURAL NETWORKS
title_full_unstemmed ESTIMATION OF PHYSICAL AND CHEMICAL SOIL PROPERTIES BY ARTIFICIAL NEURAL NETWORKS
ESTIMATION OF PHYSICAL AND CHEMICAL SOIL PROPERTIES BY ARTIFICIAL NEURAL NETWORKS
title_sort ESTIMATION OF PHYSICAL AND CHEMICAL SOIL PROPERTIES BY ARTIFICIAL NEURAL NETWORKS
author Bittar, Roberto Dib
author_facet Bittar, Roberto Dib
Bittar, Roberto Dib
Alves, Sueli Martins de Freitas
Melo, Francisco Ramos de
Alves, Sueli Martins de Freitas
Melo, Francisco Ramos de
author_role author
author2 Alves, Sueli Martins de Freitas
Melo, Francisco Ramos de
author2_role author
author
dc.contributor.author.fl_str_mv Bittar, Roberto Dib
Alves, Sueli Martins de Freitas
Melo, Francisco Ramos de
dc.subject.por.fl_str_mv Inteligência artificial. Geoestatística. Agricultura de precisão. Manejo e conservação do solo.
Artificial intelligence. Geostatistics. Precision agriculture. Soil management and conservation.
topic Inteligência artificial. Geoestatística. Agricultura de precisão. Manejo e conservação do solo.
Artificial intelligence. Geostatistics. Precision agriculture. Soil management and conservation.
description Soil physical and chemical analyses are relatively high-cost and time-consuming procedures. In the search for alternatives to predict these properties from a reduced number of soil samples, the use of Artificial Neural Networks (ANN) has been pointed out as a great computational technique to solve this problem by means of experience. This tool also has the ability to acquire knowledge and then apply it. This study aimed at using ANNs to estimate the physical and chemical properties of soil. The data came from the physical and chemical analysis of 120 sampling points, which were submitted to descriptive analysis, geostatistical analysis, and ANNs training and analysis. In the geostatistical analysis, the semivariogram model that best fitted the experimental variogram was verified for each soil property, and the ordinary kriging was used as an interpolation method. The ANNs were trained and selected based on their assertiveness in the mapping of considered standards, and then used to estimate all soil properties. The mean errors of ordinary kriging estimates were compared to those of ANNs and then compared to the original values using Student's t-Test. The results showed that the ANN had an assertiveness compatible with ordinary kriging. Therefore, such technique is a promising tool to estimate soil properties using a reduced number of soil samples.
publishDate 2018
dc.date.none.fl_str_mv 2018-05-28
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://periodicos.ufersa.edu.br/caatinga/article/view/6853
10.1590/1983-21252018v31n320rc
url https://periodicos.ufersa.edu.br/caatinga/article/view/6853
identifier_str_mv 10.1590/1983-21252018v31n320rc
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://periodicos.ufersa.edu.br/caatinga/article/view/6853/pdf
dc.rights.driver.fl_str_mv Copyright (c) 2018 Revista Caatinga
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2018 Revista Caatinga
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal Rural do Semi-Árido
publisher.none.fl_str_mv Universidade Federal Rural do Semi-Árido
dc.source.none.fl_str_mv REVISTA CAATINGA; Vol. 31 No. 3 (2018); 704-712
Revista Caatinga; v. 31 n. 3 (2018); 704-712
1983-2125
0100-316X
reponame:Revista Caatinga
instname:Universidade Federal Rural do Semi-Árido (UFERSA)
instacron:UFERSA
instname_str Universidade Federal Rural do Semi-Árido (UFERSA)
instacron_str UFERSA
institution UFERSA
reponame_str Revista Caatinga
collection Revista Caatinga
repository.name.fl_str_mv Revista Caatinga - Universidade Federal Rural do Semi-Árido (UFERSA)
repository.mail.fl_str_mv patricio@ufersa.edu.br|| caatinga@ufersa.edu.br
_version_ 1822181056526155776
dc.identifier.doi.none.fl_str_mv 10.1590/1983-21252018v31n320rc