CLASSIFICATION OF Phaseolus lunatus L. USING IMAGE ANALYSIS AND MACHINE LEARNING MODELS
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Revista Caatinga |
Texto Completo: | https://periodicos.ufersa.edu.br/caatinga/article/view/11088 |
Resumo: | Image analysis combined with machine learning models can be an excellent tool for classification of fava (Phaseolus lunatus L.) genotypes and is a low-cost system. Fava is grown by family farmers, mainly, in the Northeast and South regions of Brazil, presenting economic and social importance. Evaluations to gather information on qualitative and quantitative characters of seeds enable the description and distinction of genotypes, allowing the evaluation of variability of plant species, which is essential in breeding programs. The use of image analysis is a fast and economic tool for obtaining large quantity of information. Machine learning techniques have been developed and implemented in the agricultural sector due to technological advances and increasing use of artificial intelligence, which enables the automatization of several processes. In this context, the objective of this work was to evaluate different machine learning models to classify fava genotypes, using data obtained through image analysis. Images of fava seeds were captured using a table scanner (HP Scanjet 2004), set to true color mode, arranged upside down inside of an aluminum box fully closed during the capture of the images for an adequate illumination and prevention of environmental noises. The K-Nearest Neighbor, Naive Bayes, Linear Discriminant Analysis, Support Vector Machine, Gradient Boosting, Bootstrap Aggregating, Classification and Regression Trees, Random Forest, and C50 models were used for the study. Linear Discriminant Analysis was the model that presented the highest efficiency for classifying the genotypes, with an accuracy of 90%. |
id |
UFERSA-1_9e9ddbc52220ecd1cf033eeeaadbc41d |
---|---|
oai_identifier_str |
oai:ojs.periodicos.ufersa.edu.br:article/11088 |
network_acronym_str |
UFERSA-1 |
network_name_str |
Revista Caatinga |
repository_id_str |
|
spelling |
CLASSIFICATION OF Phaseolus lunatus L. USING IMAGE ANALYSIS AND MACHINE LEARNING MODELSCLASSIFICAÇÃO DE Phaseolus lunatus L. USANDO TÉCNICA DE ANÁLISE DE IMAGEM E MODELOS DE APRENDIZAGEM DE MÁQUINAInteligência artificial. Processamento de imagens. Sementes.Artificial intelligence. Image processing. Seeds.Image analysis combined with machine learning models can be an excellent tool for classification of fava (Phaseolus lunatus L.) genotypes and is a low-cost system. Fava is grown by family farmers, mainly, in the Northeast and South regions of Brazil, presenting economic and social importance. Evaluations to gather information on qualitative and quantitative characters of seeds enable the description and distinction of genotypes, allowing the evaluation of variability of plant species, which is essential in breeding programs. The use of image analysis is a fast and economic tool for obtaining large quantity of information. Machine learning techniques have been developed and implemented in the agricultural sector due to technological advances and increasing use of artificial intelligence, which enables the automatization of several processes. In this context, the objective of this work was to evaluate different machine learning models to classify fava genotypes, using data obtained through image analysis. Images of fava seeds were captured using a table scanner (HP Scanjet 2004), set to true color mode, arranged upside down inside of an aluminum box fully closed during the capture of the images for an adequate illumination and prevention of environmental noises. The K-Nearest Neighbor, Naive Bayes, Linear Discriminant Analysis, Support Vector Machine, Gradient Boosting, Bootstrap Aggregating, Classification and Regression Trees, Random Forest, and C50 models were used for the study. Linear Discriminant Analysis was the model that presented the highest efficiency for classifying the genotypes, with an accuracy of 90%.A análise de imagem associada com modelos de aprendizado de máquina pode ser uma excelente ferramenta de classificação para genótipos de fava, além de ser um sistema de baixo custo. A produção de feijão-fava é realizada por agricultores familiares, principalmente, nas regiões Nordeste e Sul do país, apresentando importância econômica e social. A avaliação e o conhecimento de caracteres qualitativos e quantitativos das sementes, permite a descrição e distinção de genótipos, permitindo a avaliação da variabilidade desta espécie, que é fundamental em um programa de melhoramento. O uso de análise de imagem é uma das ferramentas para obtenção de uma grande quantidade de informações de forma rápida e econômica. Com os avanços tecnológicos, e o uso cada vez mais comum de inteligência artificial, as técnicas de aprendizado de máquinas vêm sendo desenvolvidas e implementadas no setor agropecuário, permitindo que vários processos sejam automatizados. Diante do exposto, objetivou-se com esse trabalho, avaliar diferentes modelos de Machine Learning para classificar genótipos de fava, por meio de dados obtidos por análise de imagem. As imagens das sementes de fava, foram capturadas por um scanner de mesa, configurado no modo “true color”, adaptado de maneira invertida, dentro de uma caixa de alumínio, completamente fechada durante a captura da imagem, para ter iluminação adequada e eliminar ruídos do ambiente. Neste estudo foram usados os modelos de KNN, NB, LDA, SVM, GBM, BAGGING, CART, RF e C50. O modelo de LDA foi o que apresentou maior eficácia na classificação dos genótipos, com uma precisão de 90%.Universidade Federal Rural do Semi-Árido2022-09-20info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.ufersa.edu.br/caatinga/article/view/1108810.1590/1983-21252022v35n404rcREVISTA CAATINGA; Vol. 35 No. 4 (2022); 772-782Revista Caatinga; v. 35 n. 4 (2022); 772-7821983-21250100-316Xreponame:Revista Caatingainstname:Universidade Federal Rural do Semi-Árido (UFERSA)instacron:UFERSAenghttps://periodicos.ufersa.edu.br/caatinga/article/view/11088/11042Copyright (c) 2022 Revista Caatingainfo:eu-repo/semantics/openAccessCastro, Érika Beatriz de LimaMelo, Raylson de SáCosta, Emanuel Magalhães da Pessoa, Angela Maria dos SantosOliveira, Ramony Kelly BezerraBertini, Cândida Hermínia Campos de Magalhães 2023-06-30T17:50:19Zoai:ojs.periodicos.ufersa.edu.br:article/11088Revistahttps://periodicos.ufersa.edu.br/index.php/caatinga/indexPUBhttps://periodicos.ufersa.edu.br/index.php/caatinga/oaipatricio@ufersa.edu.br|| caatinga@ufersa.edu.br1983-21250100-316Xopendoar:2024-04-29T09:47:01.671914Revista Caatinga - Universidade Federal Rural do Semi-Árido (UFERSA)true |
dc.title.none.fl_str_mv |
CLASSIFICATION OF Phaseolus lunatus L. USING IMAGE ANALYSIS AND MACHINE LEARNING MODELS CLASSIFICAÇÃO DE Phaseolus lunatus L. USANDO TÉCNICA DE ANÁLISE DE IMAGEM E MODELOS DE APRENDIZAGEM DE MÁQUINA |
title |
CLASSIFICATION OF Phaseolus lunatus L. USING IMAGE ANALYSIS AND MACHINE LEARNING MODELS |
spellingShingle |
CLASSIFICATION OF Phaseolus lunatus L. USING IMAGE ANALYSIS AND MACHINE LEARNING MODELS Castro, Érika Beatriz de Lima Inteligência artificial. Processamento de imagens. Sementes. Artificial intelligence. Image processing. Seeds. |
title_short |
CLASSIFICATION OF Phaseolus lunatus L. USING IMAGE ANALYSIS AND MACHINE LEARNING MODELS |
title_full |
CLASSIFICATION OF Phaseolus lunatus L. USING IMAGE ANALYSIS AND MACHINE LEARNING MODELS |
title_fullStr |
CLASSIFICATION OF Phaseolus lunatus L. USING IMAGE ANALYSIS AND MACHINE LEARNING MODELS |
title_full_unstemmed |
CLASSIFICATION OF Phaseolus lunatus L. USING IMAGE ANALYSIS AND MACHINE LEARNING MODELS |
title_sort |
CLASSIFICATION OF Phaseolus lunatus L. USING IMAGE ANALYSIS AND MACHINE LEARNING MODELS |
author |
Castro, Érika Beatriz de Lima |
author_facet |
Castro, Érika Beatriz de Lima Melo, Raylson de Sá Costa, Emanuel Magalhães da Pessoa, Angela Maria dos Santos Oliveira, Ramony Kelly Bezerra Bertini, Cândida Hermínia Campos de Magalhães |
author_role |
author |
author2 |
Melo, Raylson de Sá Costa, Emanuel Magalhães da Pessoa, Angela Maria dos Santos Oliveira, Ramony Kelly Bezerra Bertini, Cândida Hermínia Campos de Magalhães |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Castro, Érika Beatriz de Lima Melo, Raylson de Sá Costa, Emanuel Magalhães da Pessoa, Angela Maria dos Santos Oliveira, Ramony Kelly Bezerra Bertini, Cândida Hermínia Campos de Magalhães |
dc.subject.por.fl_str_mv |
Inteligência artificial. Processamento de imagens. Sementes. Artificial intelligence. Image processing. Seeds. |
topic |
Inteligência artificial. Processamento de imagens. Sementes. Artificial intelligence. Image processing. Seeds. |
description |
Image analysis combined with machine learning models can be an excellent tool for classification of fava (Phaseolus lunatus L.) genotypes and is a low-cost system. Fava is grown by family farmers, mainly, in the Northeast and South regions of Brazil, presenting economic and social importance. Evaluations to gather information on qualitative and quantitative characters of seeds enable the description and distinction of genotypes, allowing the evaluation of variability of plant species, which is essential in breeding programs. The use of image analysis is a fast and economic tool for obtaining large quantity of information. Machine learning techniques have been developed and implemented in the agricultural sector due to technological advances and increasing use of artificial intelligence, which enables the automatization of several processes. In this context, the objective of this work was to evaluate different machine learning models to classify fava genotypes, using data obtained through image analysis. Images of fava seeds were captured using a table scanner (HP Scanjet 2004), set to true color mode, arranged upside down inside of an aluminum box fully closed during the capture of the images for an adequate illumination and prevention of environmental noises. The K-Nearest Neighbor, Naive Bayes, Linear Discriminant Analysis, Support Vector Machine, Gradient Boosting, Bootstrap Aggregating, Classification and Regression Trees, Random Forest, and C50 models were used for the study. Linear Discriminant Analysis was the model that presented the highest efficiency for classifying the genotypes, with an accuracy of 90%. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-09-20 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://periodicos.ufersa.edu.br/caatinga/article/view/11088 10.1590/1983-21252022v35n404rc |
url |
https://periodicos.ufersa.edu.br/caatinga/article/view/11088 |
identifier_str_mv |
10.1590/1983-21252022v35n404rc |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://periodicos.ufersa.edu.br/caatinga/article/view/11088/11042 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2022 Revista Caatinga info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2022 Revista Caatinga |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal Rural do Semi-Árido |
publisher.none.fl_str_mv |
Universidade Federal Rural do Semi-Árido |
dc.source.none.fl_str_mv |
REVISTA CAATINGA; Vol. 35 No. 4 (2022); 772-782 Revista Caatinga; v. 35 n. 4 (2022); 772-782 1983-2125 0100-316X reponame:Revista Caatinga instname:Universidade Federal Rural do Semi-Árido (UFERSA) instacron:UFERSA |
instname_str |
Universidade Federal Rural do Semi-Árido (UFERSA) |
instacron_str |
UFERSA |
institution |
UFERSA |
reponame_str |
Revista Caatinga |
collection |
Revista Caatinga |
repository.name.fl_str_mv |
Revista Caatinga - Universidade Federal Rural do Semi-Árido (UFERSA) |
repository.mail.fl_str_mv |
patricio@ufersa.edu.br|| caatinga@ufersa.edu.br |
_version_ |
1797674029973241856 |