CLASSIFICATION OF Phaseolus lunatus L. USING IMAGE ANALYSIS AND MACHINE LEARNING MODELS

Detalhes bibliográficos
Autor(a) principal: Castro, Érika Beatriz de Lima
Data de Publicação: 2022
Outros Autores: Melo, Raylson de Sá, Costa, Emanuel Magalhães da, Pessoa, Angela Maria dos Santos, Oliveira, Ramony Kelly Bezerra, Bertini, Cândida Hermínia Campos de Magalhães
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Revista Caatinga
Texto Completo: https://periodicos.ufersa.edu.br/caatinga/article/view/11088
Resumo: Image analysis combined with machine learning models can be an excellent tool for classification of fava (Phaseolus lunatus L.) genotypes and is a low-cost system. Fava is grown by family farmers, mainly, in the Northeast and South regions of Brazil, presenting economic and social importance. Evaluations to gather information on qualitative and quantitative characters of seeds enable the description and distinction of genotypes, allowing the evaluation of variability of plant species, which is essential in breeding programs. The use of image analysis is a fast and economic tool for obtaining large quantity of information. Machine learning techniques have been developed and implemented in the agricultural sector due to technological advances and increasing use of artificial intelligence, which enables the automatization of several processes. In this context, the objective of this work was to evaluate different machine learning models to classify fava genotypes, using data obtained through image analysis. Images of fava seeds were captured using a table scanner (HP Scanjet 2004), set to true color mode, arranged upside down inside of an aluminum box fully closed during the capture of the images for an adequate illumination and prevention of environmental noises. The K-Nearest Neighbor, Naive Bayes, Linear Discriminant Analysis, Support Vector Machine, Gradient Boosting, Bootstrap Aggregating, Classification and Regression Trees, Random Forest, and C50 models were used for the study. Linear Discriminant Analysis was the model that presented the highest efficiency for classifying the genotypes, with an accuracy of 90%.
id UFERSA-1_9e9ddbc52220ecd1cf033eeeaadbc41d
oai_identifier_str oai:ojs.periodicos.ufersa.edu.br:article/11088
network_acronym_str UFERSA-1
network_name_str Revista Caatinga
repository_id_str
spelling CLASSIFICATION OF Phaseolus lunatus L. USING IMAGE ANALYSIS AND MACHINE LEARNING MODELSCLASSIFICAÇÃO DE Phaseolus lunatus L. USANDO TÉCNICA DE ANÁLISE DE IMAGEM E MODELOS DE APRENDIZAGEM DE MÁQUINAInteligência artificial. Processamento de imagens. Sementes.Artificial intelligence. Image processing. Seeds.Image analysis combined with machine learning models can be an excellent tool for classification of fava (Phaseolus lunatus L.) genotypes and is a low-cost system. Fava is grown by family farmers, mainly, in the Northeast and South regions of Brazil, presenting economic and social importance. Evaluations to gather information on qualitative and quantitative characters of seeds enable the description and distinction of genotypes, allowing the evaluation of variability of plant species, which is essential in breeding programs. The use of image analysis is a fast and economic tool for obtaining large quantity of information. Machine learning techniques have been developed and implemented in the agricultural sector due to technological advances and increasing use of artificial intelligence, which enables the automatization of several processes. In this context, the objective of this work was to evaluate different machine learning models to classify fava genotypes, using data obtained through image analysis. Images of fava seeds were captured using a table scanner (HP Scanjet 2004), set to true color mode, arranged upside down inside of an aluminum box fully closed during the capture of the images for an adequate illumination and prevention of environmental noises. The K-Nearest Neighbor, Naive Bayes, Linear Discriminant Analysis, Support Vector Machine, Gradient Boosting, Bootstrap Aggregating, Classification and Regression Trees, Random Forest, and C50 models were used for the study. Linear Discriminant Analysis was the model that presented the highest efficiency for classifying the genotypes, with an accuracy of 90%.A análise de imagem associada com modelos de aprendizado de máquina pode ser uma excelente ferramenta de classificação para genótipos de fava, além de ser um sistema de baixo custo. A produção de feijão-fava é realizada por agricultores familiares, principalmente, nas regiões Nordeste e Sul do país, apresentando importância econômica e social. A avaliação e o conhecimento de caracteres qualitativos e quantitativos das sementes, permite a descrição e distinção de genótipos, permitindo a avaliação da variabilidade desta espécie, que é fundamental em um programa de melhoramento. O uso de análise de imagem é uma das ferramentas para obtenção de uma grande quantidade de informações de forma rápida e econômica. Com os avanços tecnológicos, e o uso cada vez mais comum de inteligência artificial, as técnicas de aprendizado de máquinas vêm sendo desenvolvidas e implementadas no setor agropecuário, permitindo que vários processos sejam automatizados. Diante do exposto, objetivou-se com esse trabalho, avaliar diferentes modelos de Machine Learning para classificar genótipos de fava, por meio de dados obtidos por análise de imagem. As imagens das sementes de fava, foram capturadas por um scanner de mesa, configurado no modo “true color”, adaptado de maneira invertida, dentro de uma caixa de alumínio, completamente fechada durante a captura da imagem, para ter iluminação adequada e eliminar ruídos do ambiente. Neste estudo foram usados os modelos de KNN, NB, LDA, SVM, GBM, BAGGING, CART, RF e C50. O modelo de LDA foi o que apresentou maior eficácia na classificação dos genótipos, com uma precisão de 90%.Universidade Federal Rural do Semi-Árido2022-09-20info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.ufersa.edu.br/caatinga/article/view/1108810.1590/1983-21252022v35n404rcREVISTA CAATINGA; Vol. 35 No. 4 (2022); 772-782Revista Caatinga; v. 35 n. 4 (2022); 772-7821983-21250100-316Xreponame:Revista Caatingainstname:Universidade Federal Rural do Semi-Árido (UFERSA)instacron:UFERSAenghttps://periodicos.ufersa.edu.br/caatinga/article/view/11088/11042Copyright (c) 2022 Revista Caatingainfo:eu-repo/semantics/openAccessCastro, Érika Beatriz de LimaMelo, Raylson de SáCosta, Emanuel Magalhães da Pessoa, Angela Maria dos SantosOliveira, Ramony Kelly BezerraBertini, Cândida Hermínia Campos de Magalhães 2023-06-30T17:50:19Zoai:ojs.periodicos.ufersa.edu.br:article/11088Revistahttps://periodicos.ufersa.edu.br/index.php/caatinga/indexPUBhttps://periodicos.ufersa.edu.br/index.php/caatinga/oaipatricio@ufersa.edu.br|| caatinga@ufersa.edu.br1983-21250100-316Xopendoar:2024-04-29T09:47:01.671914Revista Caatinga - Universidade Federal Rural do Semi-Árido (UFERSA)true
dc.title.none.fl_str_mv CLASSIFICATION OF Phaseolus lunatus L. USING IMAGE ANALYSIS AND MACHINE LEARNING MODELS
CLASSIFICAÇÃO DE Phaseolus lunatus L. USANDO TÉCNICA DE ANÁLISE DE IMAGEM E MODELOS DE APRENDIZAGEM DE MÁQUINA
title CLASSIFICATION OF Phaseolus lunatus L. USING IMAGE ANALYSIS AND MACHINE LEARNING MODELS
spellingShingle CLASSIFICATION OF Phaseolus lunatus L. USING IMAGE ANALYSIS AND MACHINE LEARNING MODELS
Castro, Érika Beatriz de Lima
Inteligência artificial. Processamento de imagens. Sementes.
Artificial intelligence. Image processing. Seeds.
title_short CLASSIFICATION OF Phaseolus lunatus L. USING IMAGE ANALYSIS AND MACHINE LEARNING MODELS
title_full CLASSIFICATION OF Phaseolus lunatus L. USING IMAGE ANALYSIS AND MACHINE LEARNING MODELS
title_fullStr CLASSIFICATION OF Phaseolus lunatus L. USING IMAGE ANALYSIS AND MACHINE LEARNING MODELS
title_full_unstemmed CLASSIFICATION OF Phaseolus lunatus L. USING IMAGE ANALYSIS AND MACHINE LEARNING MODELS
title_sort CLASSIFICATION OF Phaseolus lunatus L. USING IMAGE ANALYSIS AND MACHINE LEARNING MODELS
author Castro, Érika Beatriz de Lima
author_facet Castro, Érika Beatriz de Lima
Melo, Raylson de Sá
Costa, Emanuel Magalhães da
Pessoa, Angela Maria dos Santos
Oliveira, Ramony Kelly Bezerra
Bertini, Cândida Hermínia Campos de Magalhães
author_role author
author2 Melo, Raylson de Sá
Costa, Emanuel Magalhães da
Pessoa, Angela Maria dos Santos
Oliveira, Ramony Kelly Bezerra
Bertini, Cândida Hermínia Campos de Magalhães
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Castro, Érika Beatriz de Lima
Melo, Raylson de Sá
Costa, Emanuel Magalhães da
Pessoa, Angela Maria dos Santos
Oliveira, Ramony Kelly Bezerra
Bertini, Cândida Hermínia Campos de Magalhães
dc.subject.por.fl_str_mv Inteligência artificial. Processamento de imagens. Sementes.
Artificial intelligence. Image processing. Seeds.
topic Inteligência artificial. Processamento de imagens. Sementes.
Artificial intelligence. Image processing. Seeds.
description Image analysis combined with machine learning models can be an excellent tool for classification of fava (Phaseolus lunatus L.) genotypes and is a low-cost system. Fava is grown by family farmers, mainly, in the Northeast and South regions of Brazil, presenting economic and social importance. Evaluations to gather information on qualitative and quantitative characters of seeds enable the description and distinction of genotypes, allowing the evaluation of variability of plant species, which is essential in breeding programs. The use of image analysis is a fast and economic tool for obtaining large quantity of information. Machine learning techniques have been developed and implemented in the agricultural sector due to technological advances and increasing use of artificial intelligence, which enables the automatization of several processes. In this context, the objective of this work was to evaluate different machine learning models to classify fava genotypes, using data obtained through image analysis. Images of fava seeds were captured using a table scanner (HP Scanjet 2004), set to true color mode, arranged upside down inside of an aluminum box fully closed during the capture of the images for an adequate illumination and prevention of environmental noises. The K-Nearest Neighbor, Naive Bayes, Linear Discriminant Analysis, Support Vector Machine, Gradient Boosting, Bootstrap Aggregating, Classification and Regression Trees, Random Forest, and C50 models were used for the study. Linear Discriminant Analysis was the model that presented the highest efficiency for classifying the genotypes, with an accuracy of 90%.
publishDate 2022
dc.date.none.fl_str_mv 2022-09-20
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://periodicos.ufersa.edu.br/caatinga/article/view/11088
10.1590/1983-21252022v35n404rc
url https://periodicos.ufersa.edu.br/caatinga/article/view/11088
identifier_str_mv 10.1590/1983-21252022v35n404rc
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://periodicos.ufersa.edu.br/caatinga/article/view/11088/11042
dc.rights.driver.fl_str_mv Copyright (c) 2022 Revista Caatinga
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2022 Revista Caatinga
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal Rural do Semi-Árido
publisher.none.fl_str_mv Universidade Federal Rural do Semi-Árido
dc.source.none.fl_str_mv REVISTA CAATINGA; Vol. 35 No. 4 (2022); 772-782
Revista Caatinga; v. 35 n. 4 (2022); 772-782
1983-2125
0100-316X
reponame:Revista Caatinga
instname:Universidade Federal Rural do Semi-Árido (UFERSA)
instacron:UFERSA
instname_str Universidade Federal Rural do Semi-Árido (UFERSA)
instacron_str UFERSA
institution UFERSA
reponame_str Revista Caatinga
collection Revista Caatinga
repository.name.fl_str_mv Revista Caatinga - Universidade Federal Rural do Semi-Árido (UFERSA)
repository.mail.fl_str_mv patricio@ufersa.edu.br|| caatinga@ufersa.edu.br
_version_ 1797674029973241856