ESTIMATING CO2 EMISSIONS FROM TILLED SOILS THROUGH ARTIFICIAL NEURAL NETWORKS AND MULTIPLE LINEAR REGRESSION

Detalhes bibliográficos
Autor(a) principal: Vitória, Edney Leandro da
Data de Publicação: 2022
Outros Autores: Simon, Carla da Penha, Lacerda, Élcio das Graça, Freitas, Ismael Lourenço de Jesus, Gontijo, Ivoney
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Revista Caatinga
Texto Completo: https://periodicos.ufersa.edu.br/caatinga/article/view/11063
Resumo: Quantifying soil gas emissions is costly, since it requires specific methodologies and equipment. The objective of this study was to evaluate modeling by nonlinear regression and artificial neural networks (ANN) to estimate CO2 emissions caused by soil managements. CO2 emissions were evaluated in two different soil management systems: no-tillage and minimum tillage. Readings of CO2 flow were carried out by an automated closed system chamber; soil temperature, water content, density, and total organic carbon were also determined. The regression model and the ANN models were adjusted based on the correlation of the variables measured in the areas where the soil was managed with no-tillage and minimum tillage with data of CO2 emission. Artificial neural networks are more accurate to determine correlations between CO2 emissions and soil temperature, water content, density, and organic carbon content than linear regression.
id UFERSA-1_ae8559177fb24e4c8acbbfecb09cec94
oai_identifier_str oai:ojs.periodicos.ufersa.edu.br:article/11063
network_acronym_str UFERSA-1
network_name_str Revista Caatinga
repository_id_str
spelling ESTIMATING CO2 EMISSIONS FROM TILLED SOILS THROUGH ARTIFICIAL NEURAL NETWORKS AND MULTIPLE LINEAR REGRESSIONESTIMATIVAS DE EMISSÃO DE CO2 EM SOLOS CULTIVADOS POR MEIO DE REDES NEURAIS ARTIFICIAS E MODELO LINEAR DE REGRESSÃOGases de efeito estufa. Manejo do solo. Modelagem. Inteligência artificial.Greenhouse gases. Soil management. Modeling. Artificial intelligence.Quantifying soil gas emissions is costly, since it requires specific methodologies and equipment. The objective of this study was to evaluate modeling by nonlinear regression and artificial neural networks (ANN) to estimate CO2 emissions caused by soil managements. CO2 emissions were evaluated in two different soil management systems: no-tillage and minimum tillage. Readings of CO2 flow were carried out by an automated closed system chamber; soil temperature, water content, density, and total organic carbon were also determined. The regression model and the ANN models were adjusted based on the correlation of the variables measured in the areas where the soil was managed with no-tillage and minimum tillage with data of CO2 emission. Artificial neural networks are more accurate to determine correlations between CO2 emissions and soil temperature, water content, density, and organic carbon content than linear regression.A quantificação das emissões destes gases do solo é onerosa, uma vez que requer metodologias e equipamentos específicos. O objetivo deste foi avaliar a modelagem utilizando regressão não linear e redes neurais artificiais para estimar a emissão de CO2 em função do manejo do solo, e de suas propriedades físicas e químicas. A emissão de CO2 foi avaliada em dois diferentes manejos do solo, o plantio direto e o cultivo mínimo. As leituras de fluxo CO2 foram realizadas por meio de uma câmara de sistema fechado automático, determinou-se ainda a temperatura e teor de água do solo, densidade do solo e carbono orgânico total. O modelo de regressão e os modelos de redes neurais artificiais foram ajustados a partir da correlação entre as variáveis medidas nas áreas em que o solo foi manejado com plantio direto e cultivo mínimo, com os dados de emissão de CO2. As redes neurais artificiais são mais precisas na determinação das relações entre a emissão de CO2 e a temperatura, teor de água no solo, densidade do solo e carbono orgânico, quando comparado com os resultados de regressão linear.Universidade Federal Rural do Semi-Árido2022-09-20info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.ufersa.edu.br/caatinga/article/view/1106310.1590/1983-21252022v35n424rcREVISTA CAATINGA; Vol. 35 No. 4 (2022); 964-973Revista Caatinga; v. 35 n. 4 (2022); 964-9731983-21250100-316Xreponame:Revista Caatingainstname:Universidade Federal Rural do Semi-Árido (UFERSA)instacron:UFERSAenghttps://periodicos.ufersa.edu.br/caatinga/article/view/11063/11040Copyright (c) 2022 Revista Caatingainfo:eu-repo/semantics/openAccessVitória, Edney Leandro daSimon, Carla da PenhaLacerda, Élcio das GraçaFreitas, Ismael Lourenço de Jesus Gontijo, Ivoney2023-06-30T18:12:51Zoai:ojs.periodicos.ufersa.edu.br:article/11063Revistahttps://periodicos.ufersa.edu.br/index.php/caatinga/indexPUBhttps://periodicos.ufersa.edu.br/index.php/caatinga/oaipatricio@ufersa.edu.br|| caatinga@ufersa.edu.br1983-21250100-316Xopendoar:2024-04-29T09:47:01.348381Revista Caatinga - Universidade Federal Rural do Semi-Árido (UFERSA)true
dc.title.none.fl_str_mv ESTIMATING CO2 EMISSIONS FROM TILLED SOILS THROUGH ARTIFICIAL NEURAL NETWORKS AND MULTIPLE LINEAR REGRESSION
ESTIMATIVAS DE EMISSÃO DE CO2 EM SOLOS CULTIVADOS POR MEIO DE REDES NEURAIS ARTIFICIAS E MODELO LINEAR DE REGRESSÃO
title ESTIMATING CO2 EMISSIONS FROM TILLED SOILS THROUGH ARTIFICIAL NEURAL NETWORKS AND MULTIPLE LINEAR REGRESSION
spellingShingle ESTIMATING CO2 EMISSIONS FROM TILLED SOILS THROUGH ARTIFICIAL NEURAL NETWORKS AND MULTIPLE LINEAR REGRESSION
Vitória, Edney Leandro da
Gases de efeito estufa. Manejo do solo. Modelagem. Inteligência artificial.
Greenhouse gases. Soil management. Modeling. Artificial intelligence.
title_short ESTIMATING CO2 EMISSIONS FROM TILLED SOILS THROUGH ARTIFICIAL NEURAL NETWORKS AND MULTIPLE LINEAR REGRESSION
title_full ESTIMATING CO2 EMISSIONS FROM TILLED SOILS THROUGH ARTIFICIAL NEURAL NETWORKS AND MULTIPLE LINEAR REGRESSION
title_fullStr ESTIMATING CO2 EMISSIONS FROM TILLED SOILS THROUGH ARTIFICIAL NEURAL NETWORKS AND MULTIPLE LINEAR REGRESSION
title_full_unstemmed ESTIMATING CO2 EMISSIONS FROM TILLED SOILS THROUGH ARTIFICIAL NEURAL NETWORKS AND MULTIPLE LINEAR REGRESSION
title_sort ESTIMATING CO2 EMISSIONS FROM TILLED SOILS THROUGH ARTIFICIAL NEURAL NETWORKS AND MULTIPLE LINEAR REGRESSION
author Vitória, Edney Leandro da
author_facet Vitória, Edney Leandro da
Simon, Carla da Penha
Lacerda, Élcio das Graça
Freitas, Ismael Lourenço de Jesus
Gontijo, Ivoney
author_role author
author2 Simon, Carla da Penha
Lacerda, Élcio das Graça
Freitas, Ismael Lourenço de Jesus
Gontijo, Ivoney
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Vitória, Edney Leandro da
Simon, Carla da Penha
Lacerda, Élcio das Graça
Freitas, Ismael Lourenço de Jesus
Gontijo, Ivoney
dc.subject.por.fl_str_mv Gases de efeito estufa. Manejo do solo. Modelagem. Inteligência artificial.
Greenhouse gases. Soil management. Modeling. Artificial intelligence.
topic Gases de efeito estufa. Manejo do solo. Modelagem. Inteligência artificial.
Greenhouse gases. Soil management. Modeling. Artificial intelligence.
description Quantifying soil gas emissions is costly, since it requires specific methodologies and equipment. The objective of this study was to evaluate modeling by nonlinear regression and artificial neural networks (ANN) to estimate CO2 emissions caused by soil managements. CO2 emissions were evaluated in two different soil management systems: no-tillage and minimum tillage. Readings of CO2 flow were carried out by an automated closed system chamber; soil temperature, water content, density, and total organic carbon were also determined. The regression model and the ANN models were adjusted based on the correlation of the variables measured in the areas where the soil was managed with no-tillage and minimum tillage with data of CO2 emission. Artificial neural networks are more accurate to determine correlations between CO2 emissions and soil temperature, water content, density, and organic carbon content than linear regression.
publishDate 2022
dc.date.none.fl_str_mv 2022-09-20
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://periodicos.ufersa.edu.br/caatinga/article/view/11063
10.1590/1983-21252022v35n424rc
url https://periodicos.ufersa.edu.br/caatinga/article/view/11063
identifier_str_mv 10.1590/1983-21252022v35n424rc
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://periodicos.ufersa.edu.br/caatinga/article/view/11063/11040
dc.rights.driver.fl_str_mv Copyright (c) 2022 Revista Caatinga
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2022 Revista Caatinga
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal Rural do Semi-Árido
publisher.none.fl_str_mv Universidade Federal Rural do Semi-Árido
dc.source.none.fl_str_mv REVISTA CAATINGA; Vol. 35 No. 4 (2022); 964-973
Revista Caatinga; v. 35 n. 4 (2022); 964-973
1983-2125
0100-316X
reponame:Revista Caatinga
instname:Universidade Federal Rural do Semi-Árido (UFERSA)
instacron:UFERSA
instname_str Universidade Federal Rural do Semi-Árido (UFERSA)
instacron_str UFERSA
institution UFERSA
reponame_str Revista Caatinga
collection Revista Caatinga
repository.name.fl_str_mv Revista Caatinga - Universidade Federal Rural do Semi-Árido (UFERSA)
repository.mail.fl_str_mv patricio@ufersa.edu.br|| caatinga@ufersa.edu.br
_version_ 1797674029960658944