ESTIMATING CO2 EMISSIONS FROM TILLED SOILS THROUGH ARTIFICIAL NEURAL NETWORKS AND MULTIPLE LINEAR REGRESSION
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Revista Caatinga |
Texto Completo: | https://periodicos.ufersa.edu.br/caatinga/article/view/11063 |
Resumo: | Quantifying soil gas emissions is costly, since it requires specific methodologies and equipment. The objective of this study was to evaluate modeling by nonlinear regression and artificial neural networks (ANN) to estimate CO2 emissions caused by soil managements. CO2 emissions were evaluated in two different soil management systems: no-tillage and minimum tillage. Readings of CO2 flow were carried out by an automated closed system chamber; soil temperature, water content, density, and total organic carbon were also determined. The regression model and the ANN models were adjusted based on the correlation of the variables measured in the areas where the soil was managed with no-tillage and minimum tillage with data of CO2 emission. Artificial neural networks are more accurate to determine correlations between CO2 emissions and soil temperature, water content, density, and organic carbon content than linear regression. |
id |
UFERSA-1_ae8559177fb24e4c8acbbfecb09cec94 |
---|---|
oai_identifier_str |
oai:ojs.periodicos.ufersa.edu.br:article/11063 |
network_acronym_str |
UFERSA-1 |
network_name_str |
Revista Caatinga |
repository_id_str |
|
spelling |
ESTIMATING CO2 EMISSIONS FROM TILLED SOILS THROUGH ARTIFICIAL NEURAL NETWORKS AND MULTIPLE LINEAR REGRESSIONESTIMATIVAS DE EMISSÃO DE CO2 EM SOLOS CULTIVADOS POR MEIO DE REDES NEURAIS ARTIFICIAS E MODELO LINEAR DE REGRESSÃOGases de efeito estufa. Manejo do solo. Modelagem. Inteligência artificial.Greenhouse gases. Soil management. Modeling. Artificial intelligence.Quantifying soil gas emissions is costly, since it requires specific methodologies and equipment. The objective of this study was to evaluate modeling by nonlinear regression and artificial neural networks (ANN) to estimate CO2 emissions caused by soil managements. CO2 emissions were evaluated in two different soil management systems: no-tillage and minimum tillage. Readings of CO2 flow were carried out by an automated closed system chamber; soil temperature, water content, density, and total organic carbon were also determined. The regression model and the ANN models were adjusted based on the correlation of the variables measured in the areas where the soil was managed with no-tillage and minimum tillage with data of CO2 emission. Artificial neural networks are more accurate to determine correlations between CO2 emissions and soil temperature, water content, density, and organic carbon content than linear regression.A quantificação das emissões destes gases do solo é onerosa, uma vez que requer metodologias e equipamentos específicos. O objetivo deste foi avaliar a modelagem utilizando regressão não linear e redes neurais artificiais para estimar a emissão de CO2 em função do manejo do solo, e de suas propriedades físicas e químicas. A emissão de CO2 foi avaliada em dois diferentes manejos do solo, o plantio direto e o cultivo mínimo. As leituras de fluxo CO2 foram realizadas por meio de uma câmara de sistema fechado automático, determinou-se ainda a temperatura e teor de água do solo, densidade do solo e carbono orgânico total. O modelo de regressão e os modelos de redes neurais artificiais foram ajustados a partir da correlação entre as variáveis medidas nas áreas em que o solo foi manejado com plantio direto e cultivo mínimo, com os dados de emissão de CO2. As redes neurais artificiais são mais precisas na determinação das relações entre a emissão de CO2 e a temperatura, teor de água no solo, densidade do solo e carbono orgânico, quando comparado com os resultados de regressão linear.Universidade Federal Rural do Semi-Árido2022-09-20info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.ufersa.edu.br/caatinga/article/view/1106310.1590/1983-21252022v35n424rcREVISTA CAATINGA; Vol. 35 No. 4 (2022); 964-973Revista Caatinga; v. 35 n. 4 (2022); 964-9731983-21250100-316Xreponame:Revista Caatingainstname:Universidade Federal Rural do Semi-Árido (UFERSA)instacron:UFERSAenghttps://periodicos.ufersa.edu.br/caatinga/article/view/11063/11040Copyright (c) 2022 Revista Caatingainfo:eu-repo/semantics/openAccessVitória, Edney Leandro daSimon, Carla da PenhaLacerda, Élcio das GraçaFreitas, Ismael Lourenço de Jesus Gontijo, Ivoney2023-06-30T18:12:51Zoai:ojs.periodicos.ufersa.edu.br:article/11063Revistahttps://periodicos.ufersa.edu.br/index.php/caatinga/indexPUBhttps://periodicos.ufersa.edu.br/index.php/caatinga/oaipatricio@ufersa.edu.br|| caatinga@ufersa.edu.br1983-21250100-316Xopendoar:2024-04-29T09:47:01.348381Revista Caatinga - Universidade Federal Rural do Semi-Árido (UFERSA)true |
dc.title.none.fl_str_mv |
ESTIMATING CO2 EMISSIONS FROM TILLED SOILS THROUGH ARTIFICIAL NEURAL NETWORKS AND MULTIPLE LINEAR REGRESSION ESTIMATIVAS DE EMISSÃO DE CO2 EM SOLOS CULTIVADOS POR MEIO DE REDES NEURAIS ARTIFICIAS E MODELO LINEAR DE REGRESSÃO |
title |
ESTIMATING CO2 EMISSIONS FROM TILLED SOILS THROUGH ARTIFICIAL NEURAL NETWORKS AND MULTIPLE LINEAR REGRESSION |
spellingShingle |
ESTIMATING CO2 EMISSIONS FROM TILLED SOILS THROUGH ARTIFICIAL NEURAL NETWORKS AND MULTIPLE LINEAR REGRESSION Vitória, Edney Leandro da Gases de efeito estufa. Manejo do solo. Modelagem. Inteligência artificial. Greenhouse gases. Soil management. Modeling. Artificial intelligence. |
title_short |
ESTIMATING CO2 EMISSIONS FROM TILLED SOILS THROUGH ARTIFICIAL NEURAL NETWORKS AND MULTIPLE LINEAR REGRESSION |
title_full |
ESTIMATING CO2 EMISSIONS FROM TILLED SOILS THROUGH ARTIFICIAL NEURAL NETWORKS AND MULTIPLE LINEAR REGRESSION |
title_fullStr |
ESTIMATING CO2 EMISSIONS FROM TILLED SOILS THROUGH ARTIFICIAL NEURAL NETWORKS AND MULTIPLE LINEAR REGRESSION |
title_full_unstemmed |
ESTIMATING CO2 EMISSIONS FROM TILLED SOILS THROUGH ARTIFICIAL NEURAL NETWORKS AND MULTIPLE LINEAR REGRESSION |
title_sort |
ESTIMATING CO2 EMISSIONS FROM TILLED SOILS THROUGH ARTIFICIAL NEURAL NETWORKS AND MULTIPLE LINEAR REGRESSION |
author |
Vitória, Edney Leandro da |
author_facet |
Vitória, Edney Leandro da Simon, Carla da Penha Lacerda, Élcio das Graça Freitas, Ismael Lourenço de Jesus Gontijo, Ivoney |
author_role |
author |
author2 |
Simon, Carla da Penha Lacerda, Élcio das Graça Freitas, Ismael Lourenço de Jesus Gontijo, Ivoney |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Vitória, Edney Leandro da Simon, Carla da Penha Lacerda, Élcio das Graça Freitas, Ismael Lourenço de Jesus Gontijo, Ivoney |
dc.subject.por.fl_str_mv |
Gases de efeito estufa. Manejo do solo. Modelagem. Inteligência artificial. Greenhouse gases. Soil management. Modeling. Artificial intelligence. |
topic |
Gases de efeito estufa. Manejo do solo. Modelagem. Inteligência artificial. Greenhouse gases. Soil management. Modeling. Artificial intelligence. |
description |
Quantifying soil gas emissions is costly, since it requires specific methodologies and equipment. The objective of this study was to evaluate modeling by nonlinear regression and artificial neural networks (ANN) to estimate CO2 emissions caused by soil managements. CO2 emissions were evaluated in two different soil management systems: no-tillage and minimum tillage. Readings of CO2 flow were carried out by an automated closed system chamber; soil temperature, water content, density, and total organic carbon were also determined. The regression model and the ANN models were adjusted based on the correlation of the variables measured in the areas where the soil was managed with no-tillage and minimum tillage with data of CO2 emission. Artificial neural networks are more accurate to determine correlations between CO2 emissions and soil temperature, water content, density, and organic carbon content than linear regression. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-09-20 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://periodicos.ufersa.edu.br/caatinga/article/view/11063 10.1590/1983-21252022v35n424rc |
url |
https://periodicos.ufersa.edu.br/caatinga/article/view/11063 |
identifier_str_mv |
10.1590/1983-21252022v35n424rc |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://periodicos.ufersa.edu.br/caatinga/article/view/11063/11040 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2022 Revista Caatinga info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2022 Revista Caatinga |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal Rural do Semi-Árido |
publisher.none.fl_str_mv |
Universidade Federal Rural do Semi-Árido |
dc.source.none.fl_str_mv |
REVISTA CAATINGA; Vol. 35 No. 4 (2022); 964-973 Revista Caatinga; v. 35 n. 4 (2022); 964-973 1983-2125 0100-316X reponame:Revista Caatinga instname:Universidade Federal Rural do Semi-Árido (UFERSA) instacron:UFERSA |
instname_str |
Universidade Federal Rural do Semi-Árido (UFERSA) |
instacron_str |
UFERSA |
institution |
UFERSA |
reponame_str |
Revista Caatinga |
collection |
Revista Caatinga |
repository.name.fl_str_mv |
Revista Caatinga - Universidade Federal Rural do Semi-Árido (UFERSA) |
repository.mail.fl_str_mv |
patricio@ufersa.edu.br|| caatinga@ufersa.edu.br |
_version_ |
1797674029960658944 |