NONLINEAR MODELS FOR DESCRIPTION OF CACAO FRUIT GROWTH WITH ASSUMPTION VIOLATIONS

Detalhes bibliográficos
Autor(a) principal: Muniz, Joel Augusto
Data de Publicação: 2016
Outros Autores: Nascimento, Micherlania da Silva, Fernandes, Tales Jesus
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Revista Caatinga
Texto Completo: https://periodicos.ufersa.edu.br/caatinga/article/view/5103
Resumo: Cacao (Theobroma cacao L.) is an important fruit in the Brazilian economy, which is mainly cultivated in the southern State of Bahia. The optimal stage for harvesting is a major factor for fruit quality and the knowledge on its growth curves can help, especially in identifying the ideal maturation stage for harvesting. Nonlinear regression models have been widely used for description of growth curves. However, several studies in this subject do not consider the residual analysis, the existence of a possible dependence between longitudinal observations, or the sample variance heterogeneity, compromising the modeling quality. The objective of this work was to compare the fit of nonlinear regression models, considering residual analysis and assumption violations, in the description of the cacao (clone Sial-105) fruit growth. The data evaluated were extracted from Brito and Silva (1983), who conducted the experiment in the Cacao Research Center, Ilheus, State of Bahia. The variables fruit length, diameter and volume as a function of fruit age were studied. The use of weighting and incorporation of residual dependencies was efficient, since the modeling became more consistent, improving the model fit. Considering the first-order autoregressive structure, when needed, leads to significant reduction in the residual standard deviation, making the estimates more reliable. The Logistic model was the most efficient for the description of the cacao fruit growth.
id UFERSA-1_bd05d2edc9860378d9a87e2559a547ea
oai_identifier_str oai:ojs.periodicos.ufersa.edu.br:article/5103
network_acronym_str UFERSA-1
network_name_str Revista Caatinga
repository_id_str
spelling NONLINEAR MODELS FOR DESCRIPTION OF CACAO FRUIT GROWTH WITH ASSUMPTION VIOLATIONSMODELOS NÃO LINEARES NA DESCRIÇÃO DO CRESCIMENTO DE FRUTOS DE CACAU COM VIOLAÇÕES DOS PRESSUPOSTOSBiological interpretation. Biometric measurement. Logistic model. Theobroma cacao L..Interpretação biológica. Medida biométrica. Modelo logístico. Theobroma cacao L..Cacao (Theobroma cacao L.) is an important fruit in the Brazilian economy, which is mainly cultivated in the southern State of Bahia. The optimal stage for harvesting is a major factor for fruit quality and the knowledge on its growth curves can help, especially in identifying the ideal maturation stage for harvesting. Nonlinear regression models have been widely used for description of growth curves. However, several studies in this subject do not consider the residual analysis, the existence of a possible dependence between longitudinal observations, or the sample variance heterogeneity, compromising the modeling quality. The objective of this work was to compare the fit of nonlinear regression models, considering residual analysis and assumption violations, in the description of the cacao (clone Sial-105) fruit growth. The data evaluated were extracted from Brito and Silva (1983), who conducted the experiment in the Cacao Research Center, Ilheus, State of Bahia. The variables fruit length, diameter and volume as a function of fruit age were studied. The use of weighting and incorporation of residual dependencies was efficient, since the modeling became more consistent, improving the model fit. Considering the first-order autoregressive structure, when needed, leads to significant reduction in the residual standard deviation, making the estimates more reliable. The Logistic model was the most efficient for the description of the cacao fruit growth.O cacau é um importante produto para a economia brasileira, sendo cultivado principalmente no sul da Bahia. O ponto ótimo de colheita é um dos principais fatores de perda na qualidade do fruto e o conhecimento de suas curvas de crescimento pode auxiliar principalmente na identificação deste ponto. Os modelos de regressão não linear tem sido amplamente utilizados na descrição de curvas de crescimento. No entanto, em várias pesquisas nesse sentido não é realizada a análise de resíduos, não consideram a existência de uma possível dependência entre as observações longitudinais e nem a heterogeneidade de variâncias amostrais, comprometendo a qualidade da modelagem. Assim, este trabalho objetivou comparar o ajuste de modelos de regressão não lineares, considerando os possíveis desvios de pressuposição sobre os resíduos, na descrição do crescimento dos frutos de cacaueiro do clone Sial-105. Os dados analisados foram extraídos de Brito e Silva (1983) e correspondem a um experimento realizado no Centro de Pesquisa de Cacau, em Ilhéus-BA. As variáveis estudadas foram o comprimento, diâmetro e volume do fruto tomados em função da sua idade. O uso da ponderação e incorporação da dependência residual foi eficiente pois tornou a modelagem mais coerente melhorando a qualidade do ajuste. Considerar a estrutura auto-regressiva de primeira ordem, quando necessária, leva a redução significativa do desvio padrão residual, tornando as estimativas mais confiáveis. O modelo Logístico foi o mais eficiente na descrição do crescimento do fruto do cacau.Universidade Federal Rural do Semi-Árido2016-12-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.ufersa.edu.br/caatinga/article/view/510310.1590/1983-21252017v30n128rcREVISTA CAATINGA; Vol. 30 No. 1 (2017); 250-257Revista Caatinga; v. 30 n. 1 (2017); 250-2571983-21250100-316Xreponame:Revista Caatingainstname:Universidade Federal Rural do Semi-Árido (UFERSA)instacron:UFERSAenghttps://periodicos.ufersa.edu.br/caatinga/article/view/5103/pdfMuniz, Joel AugustoNascimento, Micherlania da SilvaFernandes, Tales Jesusinfo:eu-repo/semantics/openAccess2023-07-20T10:42:36Zoai:ojs.periodicos.ufersa.edu.br:article/5103Revistahttps://periodicos.ufersa.edu.br/index.php/caatinga/indexPUBhttps://periodicos.ufersa.edu.br/index.php/caatinga/oaipatricio@ufersa.edu.br|| caatinga@ufersa.edu.br1983-21250100-316Xopendoar:2024-04-29T09:46:21.113953Revista Caatinga - Universidade Federal Rural do Semi-Árido (UFERSA)true
dc.title.none.fl_str_mv NONLINEAR MODELS FOR DESCRIPTION OF CACAO FRUIT GROWTH WITH ASSUMPTION VIOLATIONS
MODELOS NÃO LINEARES NA DESCRIÇÃO DO CRESCIMENTO DE FRUTOS DE CACAU COM VIOLAÇÕES DOS PRESSUPOSTOS
title NONLINEAR MODELS FOR DESCRIPTION OF CACAO FRUIT GROWTH WITH ASSUMPTION VIOLATIONS
spellingShingle NONLINEAR MODELS FOR DESCRIPTION OF CACAO FRUIT GROWTH WITH ASSUMPTION VIOLATIONS
Muniz, Joel Augusto
Biological interpretation. Biometric measurement. Logistic model. Theobroma cacao L..
Interpretação biológica. Medida biométrica. Modelo logístico. Theobroma cacao L..
title_short NONLINEAR MODELS FOR DESCRIPTION OF CACAO FRUIT GROWTH WITH ASSUMPTION VIOLATIONS
title_full NONLINEAR MODELS FOR DESCRIPTION OF CACAO FRUIT GROWTH WITH ASSUMPTION VIOLATIONS
title_fullStr NONLINEAR MODELS FOR DESCRIPTION OF CACAO FRUIT GROWTH WITH ASSUMPTION VIOLATIONS
title_full_unstemmed NONLINEAR MODELS FOR DESCRIPTION OF CACAO FRUIT GROWTH WITH ASSUMPTION VIOLATIONS
title_sort NONLINEAR MODELS FOR DESCRIPTION OF CACAO FRUIT GROWTH WITH ASSUMPTION VIOLATIONS
author Muniz, Joel Augusto
author_facet Muniz, Joel Augusto
Nascimento, Micherlania da Silva
Fernandes, Tales Jesus
author_role author
author2 Nascimento, Micherlania da Silva
Fernandes, Tales Jesus
author2_role author
author
dc.contributor.author.fl_str_mv Muniz, Joel Augusto
Nascimento, Micherlania da Silva
Fernandes, Tales Jesus
dc.subject.por.fl_str_mv Biological interpretation. Biometric measurement. Logistic model. Theobroma cacao L..
Interpretação biológica. Medida biométrica. Modelo logístico. Theobroma cacao L..
topic Biological interpretation. Biometric measurement. Logistic model. Theobroma cacao L..
Interpretação biológica. Medida biométrica. Modelo logístico. Theobroma cacao L..
description Cacao (Theobroma cacao L.) is an important fruit in the Brazilian economy, which is mainly cultivated in the southern State of Bahia. The optimal stage for harvesting is a major factor for fruit quality and the knowledge on its growth curves can help, especially in identifying the ideal maturation stage for harvesting. Nonlinear regression models have been widely used for description of growth curves. However, several studies in this subject do not consider the residual analysis, the existence of a possible dependence between longitudinal observations, or the sample variance heterogeneity, compromising the modeling quality. The objective of this work was to compare the fit of nonlinear regression models, considering residual analysis and assumption violations, in the description of the cacao (clone Sial-105) fruit growth. The data evaluated were extracted from Brito and Silva (1983), who conducted the experiment in the Cacao Research Center, Ilheus, State of Bahia. The variables fruit length, diameter and volume as a function of fruit age were studied. The use of weighting and incorporation of residual dependencies was efficient, since the modeling became more consistent, improving the model fit. Considering the first-order autoregressive structure, when needed, leads to significant reduction in the residual standard deviation, making the estimates more reliable. The Logistic model was the most efficient for the description of the cacao fruit growth.
publishDate 2016
dc.date.none.fl_str_mv 2016-12-02
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://periodicos.ufersa.edu.br/caatinga/article/view/5103
10.1590/1983-21252017v30n128rc
url https://periodicos.ufersa.edu.br/caatinga/article/view/5103
identifier_str_mv 10.1590/1983-21252017v30n128rc
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://periodicos.ufersa.edu.br/caatinga/article/view/5103/pdf
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal Rural do Semi-Árido
publisher.none.fl_str_mv Universidade Federal Rural do Semi-Árido
dc.source.none.fl_str_mv REVISTA CAATINGA; Vol. 30 No. 1 (2017); 250-257
Revista Caatinga; v. 30 n. 1 (2017); 250-257
1983-2125
0100-316X
reponame:Revista Caatinga
instname:Universidade Federal Rural do Semi-Árido (UFERSA)
instacron:UFERSA
instname_str Universidade Federal Rural do Semi-Árido (UFERSA)
instacron_str UFERSA
institution UFERSA
reponame_str Revista Caatinga
collection Revista Caatinga
repository.name.fl_str_mv Revista Caatinga - Universidade Federal Rural do Semi-Árido (UFERSA)
repository.mail.fl_str_mv patricio@ufersa.edu.br|| caatinga@ufersa.edu.br
_version_ 1797674025932029952