Análise da coordenação e seletividade das proteções do sistema de 123 nós do IEEE com elevada integração de geração distribuída baseada em inversores

Detalhes bibliográficos
Autor(a) principal: Cristofano Junior, Amauri Cesar
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
Texto Completo: http://repositorio.ufes.br/handle/10/17069
Resumo: The electric power systems are responsible for supplying electrical energy from reliably, continuously and safely to consumers, ensuring quality in supply. It is essential that these systems operate correctly, even in abnormal situations such as short circuits in order to maintain these characteristics. This work aims to study the impacts of large-scale integration of Distributed generation based on inverters in a electric power system. The characteristics will be analyzed of this type of generation and its behavior during short circuits. Furthermore, they will evaluated the impacts caused by this integration in the project of protection, coordination and selectivity system. The electrical system used as an example was the IEEE 123-node model. To perform simulations, the OpenDSS software was used, which was controlled by the PyCharm software, through the Python programming language. The integration of photovoltaic generators into the electrical system was performed using OpenDSS. This software made it possible to calculate the power flow and the short-circuit currents, taking into account the presence and behavior of these generators. PyCharm, in turn, made it possible to program and control the simulations in the OpenDSS, using the Python language. With this integration, it was possible to automate and facilitate the process of simulation and analysis of the impacts of distributed generation on the system electrical studied. The use of these tools and approaches allowed to carry out accurate simulations and detailed, evaluating the behavior of the electrical system with the integration of generators photovoltaics. These analyzes are fundamental to understanding the impacts of generation distributed in the protection, coordination and selectivity project of the system, as mentioned before. It was developed in a protection project, in which intelligent electronic devices were used and fuses to realize overcurrent protection functions 50 and 51, according to the symbology adopted by the ANSI standard. Based on this project, detailed analyses, element by element, were carried out to assess whether the massive insertion of inverter-based generators would affect system coordination and selectivity electric. A concern when integrating inverter-based generators is that their short-circuit currents may change the characteristics of the electrical system, leading to a lack of coordination of protections and compromising selectivity. The analysis carried out had the objective of verifying whether this concern was valid. In the study carried out, calculations of short-circuit currents were initially made without integrating the inverter-based generators. Then, an analysis was performed considering the variation of the nominal power of the generators in different percentages: 20%, 40%, 60%, 80% and 100%. During this analysis, the objective was to verify the maximum variation of short-circuit currents results based on these variations in the nominal power of the generators. The results obtained indicated that the three-phase short-circuit currents presented a maximum variation of approximately 7.58%, while short-circuit currents single phase presented a maximum variation of about 6.73%. These results suggest that the introduction of inverter-based generators and variations in nominal power of these generators have a relatively small impact on short-circuit currents of the electrical system studied. This information is valuable for assessing the influence of inverter-based generators on short-circuit currents and provide a solid basis for sizing adequate protections, guaranteeing the reliability and security of the electrical system in short-circuit situations, even with the presence of generators based on inverters. The protections parameterized in the intelligent eletronic devices, 50 and 51, do not present undue operations nor loss of coordination and selectivity. This is due to the fact that the maximum variation found is not enough to uncoordinate the system and influence pick-up levels of the intelligent eletronic devices. Despite the massive insertion of inverter-based generators causing changes in the power flow characteristic in the studied circuit, the contributions of these generators in the short-circuit currents (ICC) can impact the operation of fuses, which are designed to operate close to Nominal chain. The parameterized protections in the intelligent eletronic devices proved to be robust and maintained coordination and selectivity, while fuse operation can be affected by the contribution of short-circuit currents of inverter-based generators. Therefore, it is important to consider these aspects when designing and dimensioning protections and safety devices in the electrical system studied.
id UFES_0d48f81bcd75877e8ea27f79a79b29f9
oai_identifier_str oai:repositorio.ufes.br:10/17069
network_acronym_str UFES
network_name_str Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
repository_id_str 2108
spelling Batista, Oureste Eliashttps://orcid.org/0000000347194132http://lattes.cnpq.br/3717606765861586Cristofano Junior, Amauri Cesarhttps://orcid.org/0009-0004-2716-5865http://lattes.cnpq.br/2464855344445028Medina, Augusto Cesar Ruedahttps://orcid.org/0000000242913153http://lattes.cnpq.br/7397584412509839Co, Marcio Almeidahttps://orcid.org/0009-0001-6026-0125http://lattes.cnpq.br/96741642016964612024-05-30T01:42:16Z2024-05-30T01:42:16Z2023-04-13The electric power systems are responsible for supplying electrical energy from reliably, continuously and safely to consumers, ensuring quality in supply. It is essential that these systems operate correctly, even in abnormal situations such as short circuits in order to maintain these characteristics. This work aims to study the impacts of large-scale integration of Distributed generation based on inverters in a electric power system. The characteristics will be analyzed of this type of generation and its behavior during short circuits. Furthermore, they will evaluated the impacts caused by this integration in the project of protection, coordination and selectivity system. The electrical system used as an example was the IEEE 123-node model. To perform simulations, the OpenDSS software was used, which was controlled by the PyCharm software, through the Python programming language. The integration of photovoltaic generators into the electrical system was performed using OpenDSS. This software made it possible to calculate the power flow and the short-circuit currents, taking into account the presence and behavior of these generators. PyCharm, in turn, made it possible to program and control the simulations in the OpenDSS, using the Python language. With this integration, it was possible to automate and facilitate the process of simulation and analysis of the impacts of distributed generation on the system electrical studied. The use of these tools and approaches allowed to carry out accurate simulations and detailed, evaluating the behavior of the electrical system with the integration of generators photovoltaics. These analyzes are fundamental to understanding the impacts of generation distributed in the protection, coordination and selectivity project of the system, as mentioned before. It was developed in a protection project, in which intelligent electronic devices were used and fuses to realize overcurrent protection functions 50 and 51, according to the symbology adopted by the ANSI standard. Based on this project, detailed analyses, element by element, were carried out to assess whether the massive insertion of inverter-based generators would affect system coordination and selectivity electric. A concern when integrating inverter-based generators is that their short-circuit currents may change the characteristics of the electrical system, leading to a lack of coordination of protections and compromising selectivity. The analysis carried out had the objective of verifying whether this concern was valid. In the study carried out, calculations of short-circuit currents were initially made without integrating the inverter-based generators. Then, an analysis was performed considering the variation of the nominal power of the generators in different percentages: 20%, 40%, 60%, 80% and 100%. During this analysis, the objective was to verify the maximum variation of short-circuit currents results based on these variations in the nominal power of the generators. The results obtained indicated that the three-phase short-circuit currents presented a maximum variation of approximately 7.58%, while short-circuit currents single phase presented a maximum variation of about 6.73%. These results suggest that the introduction of inverter-based generators and variations in nominal power of these generators have a relatively small impact on short-circuit currents of the electrical system studied. This information is valuable for assessing the influence of inverter-based generators on short-circuit currents and provide a solid basis for sizing adequate protections, guaranteeing the reliability and security of the electrical system in short-circuit situations, even with the presence of generators based on inverters. The protections parameterized in the intelligent eletronic devices, 50 and 51, do not present undue operations nor loss of coordination and selectivity. This is due to the fact that the maximum variation found is not enough to uncoordinate the system and influence pick-up levels of the intelligent eletronic devices. Despite the massive insertion of inverter-based generators causing changes in the power flow characteristic in the studied circuit, the contributions of these generators in the short-circuit currents (ICC) can impact the operation of fuses, which are designed to operate close to Nominal chain. The parameterized protections in the intelligent eletronic devices proved to be robust and maintained coordination and selectivity, while fuse operation can be affected by the contribution of short-circuit currents of inverter-based generators. Therefore, it is important to consider these aspects when designing and dimensioning protections and safety devices in the electrical system studied.Os sistemas elétricos de potência (SEP) são responsáveis por fornecer energia elétrica de forma confiável, contínua e segura aos consumidores, garantindo qualidade no fornecimento. É essencial que esses sistemas operem corretamente, mesmo em situações anormais, como curtos-circuitos, a fim de manter essas características. Este trabalho tem como objetivo estudar os impactos da integração em larga escala de geração distribuída baseada em inversores em um SEP. Serão analisadas as características desse tipo de geração e seu comportamento durante curtos-circuitos. Além disso, serão avaliados os impactos causados por essa integração no projeto de proteção, coordenação e seletividade do sistema. O sistema elétrico utilizado como exemplo foi o modelo de 123 nós do IEEE. Para realizar as simulações, foi utilizado o software OpenDSS, que foi controlado pelo software PyCharm, por meio da linguagem de programação Python. A integração dos geradores fotovoltaicos baseados em inversores no sistema elétrico foi realizada por meio do OpenDSS. Esse software permitiu calcular o fluxo de potência e as correntes de curto-circuito, levando em consideração a presença e o comportamento desses geradores. O PyCharm, por sua vez, possibilitou a programação e o controle das simulações no OpenDSS, utilizando a linguagem Python. Com essa integração, foi possível automatizar e facilitar o processo de simulação e análise dos impactos da geração distribuída no sistema elétrico estudado. A utilização dessas ferramentas e abordagens permitiu realizar simulações precisas e detalhadas, avaliando o comportamento do sistema elétrico com a integração dos geradores fotovoltaicos. Essas análises são fundamentais para compreender os impactos da geração distribuída no projeto de proteção, coordenação e seletividade do sistema, conforme mencionado anteriormente. Foi desenvolvido em projeto de proteção, no qual foram utilizados dispositivos eletrônicos inteligentes (IED) e fusíveis para realizar as funções de proteção de sobrecorrente 50 e 51, conforme a simbologia adotada pela norma ANSI. Com base nesse projeto, foram realizadas análises detalhadas, elemento por elemento, para avaliar se a inserção massiva de geradores baseados em inversores (GBI) afetaria a coordenação e seletividade do sistema elétrico. Uma preocupação ao integrar os GBI é que suas correntes de curto-circuito possam alterar as características do sistema elétrico, levando a uma descoordenação das proteções e comprometendo a seletividade. A análise realizada tinha como objetivo verificar se essa preocupação era válida. No estudo realizado, os cálculos das correntes de curto-circuito foram inicialmente feitos sem a integração dos GBIs. Em seguida, foi realizada uma análise considerando a variação da potência nominal dos geradores em diferentes porcentagens: 20%, 40%, 60%, 80% e 100%. Durante essa análise, o objetivo era verificar a variação máxima das correntes de curtocircuito resultantes com base nessas variações na potência nominal dos geradores. Os resultados obtidos indicaram que as correntes de curto-circuito trifásicas apresentaram uma variação máxima de aproximadamente 7,58%, enquanto as correntes de curto-circuito monofásicas apresentaram uma variação máxima de cerca de 6,73%. Esses resultados sugerem que a introdução dos GBIs e as variações na potência nominal desses geradores têm um impacto relativamente pequeno nas correntes de curto-circuito do sistema elétrico estudado. Essas informações são valiosas para avaliar a influência dos GBIs nas correntes de curto-circuito e fornecer uma base sólida para o dimensionamento adequado das proteções, garantindo a confiabilidade e a segurança do sistema elétrico em situações de curto-circuito, mesmo com a presença dos geradores baseados em inversores. As proteções parametrizadas nos IEDs, 50 e 51, não apresentam operações indevidas nem perda de coordenação e seletividade. Isso se deve ao fato de que a variação máxima encontrada não é suficiente para descoordenar os sistema e influenciar os níveis de pick-up dos IEDs. Apesar da inserção massiva de GBIs causar mudanças na característica do fluxo de potência no circuito estudado, as contribuições desses geradores nas correntes de curto-circuito (ICC) podem impactar a operação dos fusíveis, que são projetados para operar próximos à corrente nominal. As proteções parametrizadas nos IEDs mostraram-se robustas e mantiveram a coordenação e seletividade, enquanto a operação dos fusíveis pode ser afetada pela contribuição das correntes de curto-circuito dos GBIs. Portanto, é importante considerar esses aspectos ao projetar e dimensionar as proteções e dispositivos de segurança no sistema elétrico estudado.Texthttp://repositorio.ufes.br/handle/10/17069porUniversidade Federal do Espírito SantoMestrado em Engenharia ElétricaPrograma de Pós-Graduação em Engenharia ElétricaUFESBRCentro Tecnológicosubject.br-rjbnEngenharia ElétricaProteção do sistema elétrico de potênciaGeração distribuída baseada em inversoresCorrente de curto circuitoCoordenação e seletividadeAnálise da coordenação e seletividade das proteções do sistema de 123 nós do IEEE com elevada integração de geração distribuída baseada em inversorestitle.alternativeinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)instname:Universidade Federal do Espírito Santo (UFES)instacron:UFESORIGINALAmauriCesarCristofanoJunior-2023-dissertacao.pdfapplication/pdf6361938http://repositorio.ufes.br/bitstreams/67ce6e59-44b0-4b04-990b-c32ae8136860/downloadf01005e238c968b2b6bc4b812a50a00dMD5110/170692024-07-22 09:12:36.676oai:repositorio.ufes.br:10/17069http://repositorio.ufes.brRepositório InstitucionalPUBhttp://repositorio.ufes.br/oai/requestopendoar:21082024-10-15T17:57:55.948013Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)false
dc.title.none.fl_str_mv Análise da coordenação e seletividade das proteções do sistema de 123 nós do IEEE com elevada integração de geração distribuída baseada em inversores
dc.title.alternative.none.fl_str_mv title.alternative
title Análise da coordenação e seletividade das proteções do sistema de 123 nós do IEEE com elevada integração de geração distribuída baseada em inversores
spellingShingle Análise da coordenação e seletividade das proteções do sistema de 123 nós do IEEE com elevada integração de geração distribuída baseada em inversores
Cristofano Junior, Amauri Cesar
Engenharia Elétrica
Proteção do sistema elétrico de potência
Geração distribuída baseada em inversores
Corrente de curto circuito
Coordenação e seletividade
subject.br-rjbn
title_short Análise da coordenação e seletividade das proteções do sistema de 123 nós do IEEE com elevada integração de geração distribuída baseada em inversores
title_full Análise da coordenação e seletividade das proteções do sistema de 123 nós do IEEE com elevada integração de geração distribuída baseada em inversores
title_fullStr Análise da coordenação e seletividade das proteções do sistema de 123 nós do IEEE com elevada integração de geração distribuída baseada em inversores
title_full_unstemmed Análise da coordenação e seletividade das proteções do sistema de 123 nós do IEEE com elevada integração de geração distribuída baseada em inversores
title_sort Análise da coordenação e seletividade das proteções do sistema de 123 nós do IEEE com elevada integração de geração distribuída baseada em inversores
author Cristofano Junior, Amauri Cesar
author_facet Cristofano Junior, Amauri Cesar
author_role author
dc.contributor.authorID.none.fl_str_mv https://orcid.org/0009-0004-2716-5865
dc.contributor.authorLattes.none.fl_str_mv http://lattes.cnpq.br/2464855344445028
dc.contributor.advisor1.fl_str_mv Batista, Oureste Elias
dc.contributor.advisor1ID.fl_str_mv https://orcid.org/0000000347194132
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/3717606765861586
dc.contributor.author.fl_str_mv Cristofano Junior, Amauri Cesar
dc.contributor.referee1.fl_str_mv Medina, Augusto Cesar Rueda
dc.contributor.referee1ID.fl_str_mv https://orcid.org/0000000242913153
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/7397584412509839
dc.contributor.referee2.fl_str_mv Co, Marcio Almeida
dc.contributor.referee2ID.fl_str_mv https://orcid.org/0009-0001-6026-0125
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/9674164201696461
contributor_str_mv Batista, Oureste Elias
Medina, Augusto Cesar Rueda
Co, Marcio Almeida
dc.subject.cnpq.fl_str_mv Engenharia Elétrica
topic Engenharia Elétrica
Proteção do sistema elétrico de potência
Geração distribuída baseada em inversores
Corrente de curto circuito
Coordenação e seletividade
subject.br-rjbn
dc.subject.por.fl_str_mv Proteção do sistema elétrico de potência
Geração distribuída baseada em inversores
Corrente de curto circuito
Coordenação e seletividade
dc.subject.br-rjbn.none.fl_str_mv subject.br-rjbn
description The electric power systems are responsible for supplying electrical energy from reliably, continuously and safely to consumers, ensuring quality in supply. It is essential that these systems operate correctly, even in abnormal situations such as short circuits in order to maintain these characteristics. This work aims to study the impacts of large-scale integration of Distributed generation based on inverters in a electric power system. The characteristics will be analyzed of this type of generation and its behavior during short circuits. Furthermore, they will evaluated the impacts caused by this integration in the project of protection, coordination and selectivity system. The electrical system used as an example was the IEEE 123-node model. To perform simulations, the OpenDSS software was used, which was controlled by the PyCharm software, through the Python programming language. The integration of photovoltaic generators into the electrical system was performed using OpenDSS. This software made it possible to calculate the power flow and the short-circuit currents, taking into account the presence and behavior of these generators. PyCharm, in turn, made it possible to program and control the simulations in the OpenDSS, using the Python language. With this integration, it was possible to automate and facilitate the process of simulation and analysis of the impacts of distributed generation on the system electrical studied. The use of these tools and approaches allowed to carry out accurate simulations and detailed, evaluating the behavior of the electrical system with the integration of generators photovoltaics. These analyzes are fundamental to understanding the impacts of generation distributed in the protection, coordination and selectivity project of the system, as mentioned before. It was developed in a protection project, in which intelligent electronic devices were used and fuses to realize overcurrent protection functions 50 and 51, according to the symbology adopted by the ANSI standard. Based on this project, detailed analyses, element by element, were carried out to assess whether the massive insertion of inverter-based generators would affect system coordination and selectivity electric. A concern when integrating inverter-based generators is that their short-circuit currents may change the characteristics of the electrical system, leading to a lack of coordination of protections and compromising selectivity. The analysis carried out had the objective of verifying whether this concern was valid. In the study carried out, calculations of short-circuit currents were initially made without integrating the inverter-based generators. Then, an analysis was performed considering the variation of the nominal power of the generators in different percentages: 20%, 40%, 60%, 80% and 100%. During this analysis, the objective was to verify the maximum variation of short-circuit currents results based on these variations in the nominal power of the generators. The results obtained indicated that the three-phase short-circuit currents presented a maximum variation of approximately 7.58%, while short-circuit currents single phase presented a maximum variation of about 6.73%. These results suggest that the introduction of inverter-based generators and variations in nominal power of these generators have a relatively small impact on short-circuit currents of the electrical system studied. This information is valuable for assessing the influence of inverter-based generators on short-circuit currents and provide a solid basis for sizing adequate protections, guaranteeing the reliability and security of the electrical system in short-circuit situations, even with the presence of generators based on inverters. The protections parameterized in the intelligent eletronic devices, 50 and 51, do not present undue operations nor loss of coordination and selectivity. This is due to the fact that the maximum variation found is not enough to uncoordinate the system and influence pick-up levels of the intelligent eletronic devices. Despite the massive insertion of inverter-based generators causing changes in the power flow characteristic in the studied circuit, the contributions of these generators in the short-circuit currents (ICC) can impact the operation of fuses, which are designed to operate close to Nominal chain. The parameterized protections in the intelligent eletronic devices proved to be robust and maintained coordination and selectivity, while fuse operation can be affected by the contribution of short-circuit currents of inverter-based generators. Therefore, it is important to consider these aspects when designing and dimensioning protections and safety devices in the electrical system studied.
publishDate 2023
dc.date.issued.fl_str_mv 2023-04-13
dc.date.accessioned.fl_str_mv 2024-05-30T01:42:16Z
dc.date.available.fl_str_mv 2024-05-30T01:42:16Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufes.br/handle/10/17069
url http://repositorio.ufes.br/handle/10/17069
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv Text
dc.publisher.none.fl_str_mv Universidade Federal do Espírito Santo
Mestrado em Engenharia Elétrica
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Engenharia Elétrica
dc.publisher.initials.fl_str_mv UFES
dc.publisher.country.fl_str_mv BR
dc.publisher.department.fl_str_mv Centro Tecnológico
publisher.none.fl_str_mv Universidade Federal do Espírito Santo
Mestrado em Engenharia Elétrica
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
instname:Universidade Federal do Espírito Santo (UFES)
instacron:UFES
instname_str Universidade Federal do Espírito Santo (UFES)
instacron_str UFES
institution UFES
reponame_str Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
collection Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
bitstream.url.fl_str_mv http://repositorio.ufes.br/bitstreams/67ce6e59-44b0-4b04-990b-c32ae8136860/download
bitstream.checksum.fl_str_mv f01005e238c968b2b6bc4b812a50a00d
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)
repository.mail.fl_str_mv
_version_ 1813022545623908352