Crossing domains for accuracy: in-network stacking of machine learning classifiers

Detalhes bibliográficos
Autor(a) principal: Xavier, Bruno Missi
Data de Publicação: 2024
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
Texto Completo: http://repositorio.ufes.br/handle/10/18092
Resumo: Traffic management plays a crucial role for this expansive global connectivity. In this context, traffic classification strategically differentiates a range of applications and its requirements. This transformation enhances network agility and facilitates the direct integration of Machine Learning (ML) into the network infrastructure, fundamentally changing traffic management by promoting proactive data processing and analysis within the network. The synergy of Network Softwarization (NS) with ML not only leads to reduced latency and improved load management, but also increases the capacity to effectively handle larger volumes of data. Consequently, networks are better equipped to meet the complex demands of modern digital ecosystems, ensuring robust and efficient connectivity. This thesis delved into the domain of programmable networks, with a specific focus on implementing ML for traffic classification within the network architecture components, including the Radio Access Network (RAN) and programmable data planes. This approach represents a significant departure from the traditional traffic classification techniques, which are typically deployed on end-hosts. It also paves the way for integrating Cross Domain Artificial Intelligence (AI) capabilities within the network, facilitated by multi-view learning. More specifically, we advanced the state-of-the-art with four main contributions: (i) We design a framework named Early Attack Guarding and Learning Engine (EAGLE) as the first defense line against a set of cyber threats. Our framework explores Open Radio Access Network (O-RAN) to collect measurements from the air interface (that is, Physical and Medium Access Control) to identify and early mitigate malicious flows; (ii) We introduce MAP4 that demonstrates the feasibility of deploying ML models (that is, decision trees and Random Forest) in the data plane. To achieve this, we rely on the P4 language to deploy a pre-trained model to accurately classify flows at line rate; (iii) We proposed an In-Network Concept Drift to deal with the dynamic nature of the network traffic. This approach detects changes in traffic distribution by implementing Exponentially Weighted Moving Average (EWMA) overcoming the P4 limitations; (iv) Our Cross-Domain AI integrates multiple layers (RAN and programmable data planes) to form an in-network stacking of ML classifiers under the multi-view learning perspective. This innovative approach overcomes the challenges of a single layer in order to improve the overall accuracy of the classification system.
id UFES_1749e783ac4c8e1fac56658062e27854
oai_identifier_str oai:repositorio.ufes.br:10/18092
network_acronym_str UFES
network_name_str Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
repository_id_str 2108
spelling Crossing domains for accuracy: in-network stacking of machine learning classifiersNetwork softwarizationMachine learningTraffic classificationCiência da ComputaçãoTraffic management plays a crucial role for this expansive global connectivity. In this context, traffic classification strategically differentiates a range of applications and its requirements. This transformation enhances network agility and facilitates the direct integration of Machine Learning (ML) into the network infrastructure, fundamentally changing traffic management by promoting proactive data processing and analysis within the network. The synergy of Network Softwarization (NS) with ML not only leads to reduced latency and improved load management, but also increases the capacity to effectively handle larger volumes of data. Consequently, networks are better equipped to meet the complex demands of modern digital ecosystems, ensuring robust and efficient connectivity. This thesis delved into the domain of programmable networks, with a specific focus on implementing ML for traffic classification within the network architecture components, including the Radio Access Network (RAN) and programmable data planes. This approach represents a significant departure from the traditional traffic classification techniques, which are typically deployed on end-hosts. It also paves the way for integrating Cross Domain Artificial Intelligence (AI) capabilities within the network, facilitated by multi-view learning. More specifically, we advanced the state-of-the-art with four main contributions: (i) We design a framework named Early Attack Guarding and Learning Engine (EAGLE) as the first defense line against a set of cyber threats. Our framework explores Open Radio Access Network (O-RAN) to collect measurements from the air interface (that is, Physical and Medium Access Control) to identify and early mitigate malicious flows; (ii) We introduce MAP4 that demonstrates the feasibility of deploying ML models (that is, decision trees and Random Forest) in the data plane. To achieve this, we rely on the P4 language to deploy a pre-trained model to accurately classify flows at line rate; (iii) We proposed an In-Network Concept Drift to deal with the dynamic nature of the network traffic. This approach detects changes in traffic distribution by implementing Exponentially Weighted Moving Average (EWMA) overcoming the P4 limitations; (iv) Our Cross-Domain AI integrates multiple layers (RAN and programmable data planes) to form an in-network stacking of ML classifiers under the multi-view learning perspective. This innovative approach overcomes the challenges of a single layer in order to improve the overall accuracy of the classification system.resumoAgência de fomentoUniversidade Federal do Espírito SantoBRDoutorado em Ciência da ComputaçãoCentro TecnológicoUFESPrograma de Pós-Graduação em InformáticaRuffini, Marcohttps://orcid.org/0000-0001-6220-0065Martinello, Magnoshttps://orcid.org/0000-0002-8111-1719Pacheco, AndréKirian, MariamPasquini, RafaelAparicio, Albert CabellosXavier, Bruno Missi2024-10-31T18:45:52Z2024-10-31T18:45:52Z2024-06-21info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisTextapplication/pdfhttp://repositorio.ufes.br/handle/10/18092porptopen access, restricted access ou embargoed accessinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)instname:Universidade Federal do Espírito Santo (UFES)instacron:UFES2024-10-31T15:53:32Zoai:repositorio.ufes.br:10/18092Repositório InstitucionalPUBhttp://repositorio.ufes.br/oai/requestopendoar:21082024-10-31T15:53:32Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)false
dc.title.none.fl_str_mv Crossing domains for accuracy: in-network stacking of machine learning classifiers
title Crossing domains for accuracy: in-network stacking of machine learning classifiers
spellingShingle Crossing domains for accuracy: in-network stacking of machine learning classifiers
Xavier, Bruno Missi
Network softwarization
Machine learning
Traffic classification
Ciência da Computação
title_short Crossing domains for accuracy: in-network stacking of machine learning classifiers
title_full Crossing domains for accuracy: in-network stacking of machine learning classifiers
title_fullStr Crossing domains for accuracy: in-network stacking of machine learning classifiers
title_full_unstemmed Crossing domains for accuracy: in-network stacking of machine learning classifiers
title_sort Crossing domains for accuracy: in-network stacking of machine learning classifiers
author Xavier, Bruno Missi
author_facet Xavier, Bruno Missi
author_role author
dc.contributor.none.fl_str_mv Ruffini, Marco
https://orcid.org/0000-0001-6220-0065
Martinello, Magnos
https://orcid.org/0000-0002-8111-1719
Pacheco, André
Kirian, Mariam
Pasquini, Rafael
Aparicio, Albert Cabellos
dc.contributor.author.fl_str_mv Xavier, Bruno Missi
dc.subject.por.fl_str_mv Network softwarization
Machine learning
Traffic classification
Ciência da Computação
topic Network softwarization
Machine learning
Traffic classification
Ciência da Computação
description Traffic management plays a crucial role for this expansive global connectivity. In this context, traffic classification strategically differentiates a range of applications and its requirements. This transformation enhances network agility and facilitates the direct integration of Machine Learning (ML) into the network infrastructure, fundamentally changing traffic management by promoting proactive data processing and analysis within the network. The synergy of Network Softwarization (NS) with ML not only leads to reduced latency and improved load management, but also increases the capacity to effectively handle larger volumes of data. Consequently, networks are better equipped to meet the complex demands of modern digital ecosystems, ensuring robust and efficient connectivity. This thesis delved into the domain of programmable networks, with a specific focus on implementing ML for traffic classification within the network architecture components, including the Radio Access Network (RAN) and programmable data planes. This approach represents a significant departure from the traditional traffic classification techniques, which are typically deployed on end-hosts. It also paves the way for integrating Cross Domain Artificial Intelligence (AI) capabilities within the network, facilitated by multi-view learning. More specifically, we advanced the state-of-the-art with four main contributions: (i) We design a framework named Early Attack Guarding and Learning Engine (EAGLE) as the first defense line against a set of cyber threats. Our framework explores Open Radio Access Network (O-RAN) to collect measurements from the air interface (that is, Physical and Medium Access Control) to identify and early mitigate malicious flows; (ii) We introduce MAP4 that demonstrates the feasibility of deploying ML models (that is, decision trees and Random Forest) in the data plane. To achieve this, we rely on the P4 language to deploy a pre-trained model to accurately classify flows at line rate; (iii) We proposed an In-Network Concept Drift to deal with the dynamic nature of the network traffic. This approach detects changes in traffic distribution by implementing Exponentially Weighted Moving Average (EWMA) overcoming the P4 limitations; (iv) Our Cross-Domain AI integrates multiple layers (RAN and programmable data planes) to form an in-network stacking of ML classifiers under the multi-view learning perspective. This innovative approach overcomes the challenges of a single layer in order to improve the overall accuracy of the classification system.
publishDate 2024
dc.date.none.fl_str_mv 2024-10-31T18:45:52Z
2024-10-31T18:45:52Z
2024-06-21
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufes.br/handle/10/18092
url http://repositorio.ufes.br/handle/10/18092
dc.language.iso.fl_str_mv por
pt
language por
language_invalid_str_mv pt
dc.rights.driver.fl_str_mv open access, restricted access ou embargoed access
info:eu-repo/semantics/openAccess
rights_invalid_str_mv open access, restricted access ou embargoed access
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv Text
application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Espírito Santo
BR
Doutorado em Ciência da Computação
Centro Tecnológico
UFES
Programa de Pós-Graduação em Informática
publisher.none.fl_str_mv Universidade Federal do Espírito Santo
BR
Doutorado em Ciência da Computação
Centro Tecnológico
UFES
Programa de Pós-Graduação em Informática
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
instname:Universidade Federal do Espírito Santo (UFES)
instacron:UFES
instname_str Universidade Federal do Espírito Santo (UFES)
instacron_str UFES
institution UFES
reponame_str Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
collection Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)
repository.mail.fl_str_mv
_version_ 1818368033629929472