Codigestão anaeróbia de esgoto sanitário e lodo algáceo em um reator UASB
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
Texto Completo: | http://repositorio.ufes.br/handle/10/9539 |
Resumo: | This research aimed to study the effects of anaerobic co-digestion of domestic wastewater and algae sludge in a UASB reactor, by evaluating its performance before (phase 1) and after algal sludge recycling into the anaerobic reactor (phase 2). The UASB reactor has 3.78 m³ of useful volume and 4.8 meters in height and was monitored by 410 days. The sludge used in the anaerobic co-digestion process is a physical-chemical algae sludge without pre-treatment. After the start up that lasted 138 days, the reactor presented a satisfactory performance for the anaerobic treatment of the sewage in phase 1 (164 days) and phase 2 (108 days). The average COD concentration in the effluent was 160 mg/L and 125 mg/L for phase 1 and phase 2, respectively, while the average TSS was 48 mg/L and 41 mg/L for phase 1 and phase 2, respectively. The HTR and OLR was 8,8h and 1,14 kgCOD.m-3 .d-1 for phase 1, respectively, and 9,5h and 0,98 kgCOD.m-3 .d-1 for phase 2, respectively. The reactor sludge age decreased from 108 days (phase 1) to 98 days (phase 2) due to the sludge production increasing from 0.48 kgTS.d-1 (phase 1) to 0.57 kgTS.d-1 (phase 2). This fact implies to increase the frequency of UASB excess sludge discharge. The daily apport of algal sludge at phase 2 reduced significantly the sludge stability in the blanket region. This behavior suggests the microalgae displacement from sludge bed to sludge blanked region. The biogas production per capita was 10 L/hab.d (phase 1) and 6 L/hab.d (phase 2). The estimated methane production was 6 L/hab.d (phase 1) and 4 L/hab.d (phase 2). As a consequence, the power of the effectively captured biogas was 0.18 kW (0.0024 kW/hab) and 0.11kW (0.0015 kW/hab) in the phase 1 and 2, respectively. The decreasing on methane production at phase 2 can be attribute to the decrease of OLR and temperature. The mass balance results in terms of COD suggests that the anaerobic co-digestion process contributed to the increase of COD converted to anaerobic sludge. This relative increase in sludge production may be related to the non-digestion of the microalgae which are captured by the sludge from the reactor but are not fully digested by it. It was concluded that in order to increase the conversion of the organic material of the reactor, the UASB must be operated at the maximum sludge age and it’s necessary pre-treat the algal sludge before the anaerobic co-digestion. |
id |
UFES_2b0e4491f4730234af2b80ff897144d8 |
---|---|
oai_identifier_str |
oai:repositorio.ufes.br:10/9539 |
network_acronym_str |
UFES |
network_name_str |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
repository_id_str |
2108 |
spelling |
Borges, Raquel MachadoGonçalves, Ricardo FranciAssis, Tatiana IzatoCampos, Rosane Hein deMendonça, Neyson Martins2018-08-01T23:59:29Z2018-08-012018-08-01T23:59:29Z2017-12-12This research aimed to study the effects of anaerobic co-digestion of domestic wastewater and algae sludge in a UASB reactor, by evaluating its performance before (phase 1) and after algal sludge recycling into the anaerobic reactor (phase 2). The UASB reactor has 3.78 m³ of useful volume and 4.8 meters in height and was monitored by 410 days. The sludge used in the anaerobic co-digestion process is a physical-chemical algae sludge without pre-treatment. After the start up that lasted 138 days, the reactor presented a satisfactory performance for the anaerobic treatment of the sewage in phase 1 (164 days) and phase 2 (108 days). The average COD concentration in the effluent was 160 mg/L and 125 mg/L for phase 1 and phase 2, respectively, while the average TSS was 48 mg/L and 41 mg/L for phase 1 and phase 2, respectively. The HTR and OLR was 8,8h and 1,14 kgCOD.m-3 .d-1 for phase 1, respectively, and 9,5h and 0,98 kgCOD.m-3 .d-1 for phase 2, respectively. The reactor sludge age decreased from 108 days (phase 1) to 98 days (phase 2) due to the sludge production increasing from 0.48 kgTS.d-1 (phase 1) to 0.57 kgTS.d-1 (phase 2). This fact implies to increase the frequency of UASB excess sludge discharge. The daily apport of algal sludge at phase 2 reduced significantly the sludge stability in the blanket region. This behavior suggests the microalgae displacement from sludge bed to sludge blanked region. The biogas production per capita was 10 L/hab.d (phase 1) and 6 L/hab.d (phase 2). The estimated methane production was 6 L/hab.d (phase 1) and 4 L/hab.d (phase 2). As a consequence, the power of the effectively captured biogas was 0.18 kW (0.0024 kW/hab) and 0.11kW (0.0015 kW/hab) in the phase 1 and 2, respectively. The decreasing on methane production at phase 2 can be attribute to the decrease of OLR and temperature. The mass balance results in terms of COD suggests that the anaerobic co-digestion process contributed to the increase of COD converted to anaerobic sludge. This relative increase in sludge production may be related to the non-digestion of the microalgae which are captured by the sludge from the reactor but are not fully digested by it. It was concluded that in order to increase the conversion of the organic material of the reactor, the UASB must be operated at the maximum sludge age and it’s necessary pre-treat the algal sludge before the anaerobic co-digestion.Essa pesquisa objetivou estudar os efeitos da codigestão anaeróbia de esgoto sanitário e lodo algáceo em um reator UASB, analisando o desempenho do reator antes (Etapa 1) e durante no processo de codigestão anaeróbia (Etapa 2). O reator UASB utilizado possui 3,78 m³ de volume útil de 4,8 metros de altura e foi monitorado por 410 dias. No processo de codigestão foi utilizado lodo algáceo físico-químico sem pré-tratamento. Após o período de partida que durou 138 dias, o reator manteve desempenho satisfatório no tratamento anaeróbio do esgoto sanitário na etapa 1 (164 dias) e etapa 2 (108 dias). O efluente apresentou concentração média de 160 mg/L de DQO e 49 mg/L de SST (etapa 1) e 125 mg/L de DQO e 41 mg/L de SST (etapa 2). O TDH e COV do reator foi de 8,8h e 1,14 kgDQO.m-3 .d-1 (etapa 1) e 9,5h e 0,98 kgDQO.m-3 .d-1 (etapa 2). A idade do lodo decresceu da etapa 1 (108 dias) para a etapa 2 (98 dias), como consequência do aumento da produção de sólidos de 0,48 kgST.d1 (etapa 1) para 0,57 kgST.d-1 (etapa 2). Tal fato implica em uma maior frequência de descarte do lodo de excesso do UASB. O aporte contínuo de lodo algáceo na etapa 2 tornou o lodo significativamente menos estabilizado na região de manta, provavelmente devido ao carreamento das microalgas da região de leito para a manta de lodo do UASB. A produção de biogás foi de 10 L/hab.d (Etapa 1) e 6 L/hab.d (Etapa 2). A produção estimada de metano foi 6 L/hab.d (Etapa 1) e 4 L/hab.d (Etapa 2). Como consequência, a potência disponível do biogás efetivamente capturado foi de 0,18 kW (0,0024 kW/hab) e 0,11kW (0,0015 kW/hab) nas etapas 1 e 2, respectivamente. Atribui-se à diminuição da COV aplicada e Temperatura à queda na produção de metano na etapa 2. O resultado do balanço de massa de DQO sugere que o processo de codigestão anaeróbia contribuiu para o aumento da DQO convertida em lodo anaeróbio. Esse aumento relativo da produção de lodo pode estar relacionado com a não digestão das microalgas, as quais são capturadas pelo lodo do reator, mas não são totalmente digeridas por ele. A DQO das microalgas pouco contribuiu para a produção de metano no UASB neste estudo. Por fim, concluiu-se que para aumentar a conversão do material orgânico no reator deve-se operar o UASB à máxima idade do lodo e pré-tratar o lodo algáceo antes do processo de codigestão anaeróbia.Texthttp://repositorio.ufes.br/handle/10/9539porUniversidade Federal do Espírito SantoMestrado Profissional em Engenharia e Desenvolvimento SustentávelPrograma de Pós-Graduação em Engenharia e Desenvolvimento SustentávelUFESBRCentro Tecnológicomicroalgaealgae sludgeanaerobic co-digestionbiogasenergyUASBEnergia renovávelmicroalgasLodo algáceoCodigestão anaeróbiaReator UASBMicroalgaLodo residualDigestão anaeróbiaBiogásEnergia - Fontes alternativasEngenharia Sanitária628Codigestão anaeróbia de esgoto sanitário e lodo algáceo em um reator UASBinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)instname:Universidade Federal do Espírito Santo (UFES)instacron:UFESORIGINALtese_11561_Dissertação_Tatiana_FINAL_06.03.pdfapplication/pdf5608646http://repositorio.ufes.br/bitstreams/e71b80b3-9184-4b70-bcf2-bc153c4eeab1/downloadd571507d795f5e8657651ed43cd53c17MD5110/95392024-07-17 16:59:04.253oai:repositorio.ufes.br:10/9539http://repositorio.ufes.brRepositório InstitucionalPUBhttp://repositorio.ufes.br/oai/requestopendoar:21082024-10-15T18:01:43.331046Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)false |
dc.title.none.fl_str_mv |
Codigestão anaeróbia de esgoto sanitário e lodo algáceo em um reator UASB |
title |
Codigestão anaeróbia de esgoto sanitário e lodo algáceo em um reator UASB |
spellingShingle |
Codigestão anaeróbia de esgoto sanitário e lodo algáceo em um reator UASB Assis, Tatiana Izato microalgae algae sludge anaerobic co-digestion biogas energy UASB Energia renovável microalgas Lodo algáceo Codigestão anaeróbia Engenharia Sanitária Reator UASB Microalga Lodo residual Digestão anaeróbia Biogás Energia - Fontes alternativas 628 |
title_short |
Codigestão anaeróbia de esgoto sanitário e lodo algáceo em um reator UASB |
title_full |
Codigestão anaeróbia de esgoto sanitário e lodo algáceo em um reator UASB |
title_fullStr |
Codigestão anaeróbia de esgoto sanitário e lodo algáceo em um reator UASB |
title_full_unstemmed |
Codigestão anaeróbia de esgoto sanitário e lodo algáceo em um reator UASB |
title_sort |
Codigestão anaeróbia de esgoto sanitário e lodo algáceo em um reator UASB |
author |
Assis, Tatiana Izato |
author_facet |
Assis, Tatiana Izato |
author_role |
author |
dc.contributor.advisor-co1.fl_str_mv |
Borges, Raquel Machado |
dc.contributor.advisor1.fl_str_mv |
Gonçalves, Ricardo Franci |
dc.contributor.author.fl_str_mv |
Assis, Tatiana Izato |
dc.contributor.referee1.fl_str_mv |
Campos, Rosane Hein de |
dc.contributor.referee2.fl_str_mv |
Mendonça, Neyson Martins |
contributor_str_mv |
Borges, Raquel Machado Gonçalves, Ricardo Franci Campos, Rosane Hein de Mendonça, Neyson Martins |
dc.subject.eng.fl_str_mv |
microalgae algae sludge anaerobic co-digestion biogas energy |
topic |
microalgae algae sludge anaerobic co-digestion biogas energy UASB Energia renovável microalgas Lodo algáceo Codigestão anaeróbia Engenharia Sanitária Reator UASB Microalga Lodo residual Digestão anaeróbia Biogás Energia - Fontes alternativas 628 |
dc.subject.por.fl_str_mv |
UASB Energia renovável microalgas Lodo algáceo Codigestão anaeróbia |
dc.subject.cnpq.fl_str_mv |
Engenharia Sanitária |
dc.subject.br-rjbn.none.fl_str_mv |
Reator UASB Microalga Lodo residual Digestão anaeróbia Biogás Energia - Fontes alternativas |
dc.subject.udc.none.fl_str_mv |
628 |
description |
This research aimed to study the effects of anaerobic co-digestion of domestic wastewater and algae sludge in a UASB reactor, by evaluating its performance before (phase 1) and after algal sludge recycling into the anaerobic reactor (phase 2). The UASB reactor has 3.78 m³ of useful volume and 4.8 meters in height and was monitored by 410 days. The sludge used in the anaerobic co-digestion process is a physical-chemical algae sludge without pre-treatment. After the start up that lasted 138 days, the reactor presented a satisfactory performance for the anaerobic treatment of the sewage in phase 1 (164 days) and phase 2 (108 days). The average COD concentration in the effluent was 160 mg/L and 125 mg/L for phase 1 and phase 2, respectively, while the average TSS was 48 mg/L and 41 mg/L for phase 1 and phase 2, respectively. The HTR and OLR was 8,8h and 1,14 kgCOD.m-3 .d-1 for phase 1, respectively, and 9,5h and 0,98 kgCOD.m-3 .d-1 for phase 2, respectively. The reactor sludge age decreased from 108 days (phase 1) to 98 days (phase 2) due to the sludge production increasing from 0.48 kgTS.d-1 (phase 1) to 0.57 kgTS.d-1 (phase 2). This fact implies to increase the frequency of UASB excess sludge discharge. The daily apport of algal sludge at phase 2 reduced significantly the sludge stability in the blanket region. This behavior suggests the microalgae displacement from sludge bed to sludge blanked region. The biogas production per capita was 10 L/hab.d (phase 1) and 6 L/hab.d (phase 2). The estimated methane production was 6 L/hab.d (phase 1) and 4 L/hab.d (phase 2). As a consequence, the power of the effectively captured biogas was 0.18 kW (0.0024 kW/hab) and 0.11kW (0.0015 kW/hab) in the phase 1 and 2, respectively. The decreasing on methane production at phase 2 can be attribute to the decrease of OLR and temperature. The mass balance results in terms of COD suggests that the anaerobic co-digestion process contributed to the increase of COD converted to anaerobic sludge. This relative increase in sludge production may be related to the non-digestion of the microalgae which are captured by the sludge from the reactor but are not fully digested by it. It was concluded that in order to increase the conversion of the organic material of the reactor, the UASB must be operated at the maximum sludge age and it’s necessary pre-treat the algal sludge before the anaerobic co-digestion. |
publishDate |
2017 |
dc.date.issued.fl_str_mv |
2017-12-12 |
dc.date.accessioned.fl_str_mv |
2018-08-01T23:59:29Z |
dc.date.available.fl_str_mv |
2018-08-01 2018-08-01T23:59:29Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositorio.ufes.br/handle/10/9539 |
url |
http://repositorio.ufes.br/handle/10/9539 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
Text |
dc.publisher.none.fl_str_mv |
Universidade Federal do Espírito Santo Mestrado Profissional em Engenharia e Desenvolvimento Sustentável |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Engenharia e Desenvolvimento Sustentável |
dc.publisher.initials.fl_str_mv |
UFES |
dc.publisher.country.fl_str_mv |
BR |
dc.publisher.department.fl_str_mv |
Centro Tecnológico |
publisher.none.fl_str_mv |
Universidade Federal do Espírito Santo Mestrado Profissional em Engenharia e Desenvolvimento Sustentável |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) instname:Universidade Federal do Espírito Santo (UFES) instacron:UFES |
instname_str |
Universidade Federal do Espírito Santo (UFES) |
instacron_str |
UFES |
institution |
UFES |
reponame_str |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
collection |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
bitstream.url.fl_str_mv |
http://repositorio.ufes.br/bitstreams/e71b80b3-9184-4b70-bcf2-bc153c4eeab1/download |
bitstream.checksum.fl_str_mv |
d571507d795f5e8657651ed43cd53c17 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES) |
repository.mail.fl_str_mv |
|
_version_ |
1813022572598525952 |