Análise Multivariada de Dados em Petroleômica por Técnicas de Alta Resolução: Espectrometria de Massas de Ressonância Ciclotrônica de Íons por Transformada de Fourier e Ressonância Magnética Nuclear

Detalhes bibliográficos
Autor(a) principal: Folli, Gabriely Silveira
Data de Publicação: 2024
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
Texto Completo: http://repositorio.ufes.br/handle/10/17321
Resumo: Crude oil is a complex matrix, and the more in-depth study of its chemical structure (Petroleomics) has begun to be adopted by high-resolution techniques such as Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and high-field nuclear magnetic resonance (NMR) spectroscopy. However, high-resolution data presents challenges in spectral processing due to spectral variations. Consequently, the objective of this thesis was to develop multivariate data analysis applications (classification, regression, and design of experiments) to help overcome some of the limitations posed by high-resolution data. The first objective was to investigate the spectral profiles of analytical instruments (NMR, FT-ICR MS, nearinfrared – NIR, mid-infrared – MIR, and high-efficiency gas chromatography – HTGC). It was observed that high-resolution spectra predominantly exhibited a discrete profile (less correlated variables), while lower-resolution spectra showed a more continuous profile (more correlated variables), making them better suited for information clustering methodologies. The second objective involved estimating the intermediate precision of high-resolution mass spectrometers (FT-ICR MS and Orbitrap MS). It was noticed that both equipment presented oil with similar classes, but FT-ICR MS attributed a higher number of statistically assigned signals and had a lower detection limit compared to Orbitrap MS, due to its higher sensitivity. Furthermore, repeatability and intermediate precision of both spectrometers, although similar, demonstrated better values for FT-ICR MS in comparison to Orbitrap MS. The third objective focused on optimizing experimental parameters for ESI(±)FT-ICR MS in crude oil analysis. Plackett-Burman filtering planning was used to identify significant parameters, and the optimal analysis conditions were determined through a full factorial design. Global desirability determined by spectral quality metrics served as the response parameter for all experimental designs. The fourth objective aimed to develop a variable selection method that identifies variable correlations (Angular Search Algorithm with Variance Inflation Factor – ASA-VIF) and applies it to high-field 1H NMR, comparing it with MIR and NIR in linear (Partial Least Squares, PLS) and non-linear (Support Vector Regression, SVR) regression. An outlier identification methodology for non-linear models was also created. The results demonstrated that 1H NMR performed better using ASA-VIF-SVR. Furthermore, this selection drastically reduced the amount of information in MIR and NIR compared to 1H NMR, as these instruments contained a greater amount of correlated information (see the first application chapter). The final objective involved constructing a methodology for generating virtual samples (synthetic samples and artificial outliers) in complex data group classification models. This was essential as sample balance is crucial for more reliable metrics. The models showed good performance using virtual samples in both linear (PLS-DA) and non-linear (SVR) methodologies and with highresolution (Orbitrap MS) and low-resolution (MIR) spectra. In conclusion, all objectives resulted in improvements in the treatment of complex data using highresolution techniques.
id UFES_494213d339581a3497bf759fb4a2ae5b
oai_identifier_str oai:repositorio.ufes.br:10/17321
network_acronym_str UFES
network_name_str Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
repository_id_str 2108
spelling 417Romão, Wandersonhttps://orcid.org/0000-0002-2254-6683http://lattes.cnpq.br/9121022613112821Filgueiras, Paulo Robertohttps://orcid.org/0000-0003-2617-1601http://lattes.cnpq.br/1907915547207861Folli, Gabriely Silveirahttps://orcid.org/0000-0003-0665-7540http://lattes.cnpq.br/1256230443856795Neto, Álvaro Cunhahttps://orcid.org/0000-0002-1814-6214http://lattes.cnpq.br/7448379486432052Rosa, Thalles Ramonhttps://orcid.org/0000-0001-9913-5885http://lattes.cnpq.br/2629035369494897Terra, Luciana Assishttps://orcid.org/0000-0003-2687-9669http://lattes.cnpq.br/4918273242518895Chinelatto Júnior, Luiz Silvinohttps://orcid.org/0000-0002-0974-0465http://lattes.cnpq.br/80082844541623182024-06-14T12:28:21Z2024-06-14T12:28:21Z2024-02-24Crude oil is a complex matrix, and the more in-depth study of its chemical structure (Petroleomics) has begun to be adopted by high-resolution techniques such as Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and high-field nuclear magnetic resonance (NMR) spectroscopy. However, high-resolution data presents challenges in spectral processing due to spectral variations. Consequently, the objective of this thesis was to develop multivariate data analysis applications (classification, regression, and design of experiments) to help overcome some of the limitations posed by high-resolution data. The first objective was to investigate the spectral profiles of analytical instruments (NMR, FT-ICR MS, nearinfrared – NIR, mid-infrared – MIR, and high-efficiency gas chromatography – HTGC). It was observed that high-resolution spectra predominantly exhibited a discrete profile (less correlated variables), while lower-resolution spectra showed a more continuous profile (more correlated variables), making them better suited for information clustering methodologies. The second objective involved estimating the intermediate precision of high-resolution mass spectrometers (FT-ICR MS and Orbitrap MS). It was noticed that both equipment presented oil with similar classes, but FT-ICR MS attributed a higher number of statistically assigned signals and had a lower detection limit compared to Orbitrap MS, due to its higher sensitivity. Furthermore, repeatability and intermediate precision of both spectrometers, although similar, demonstrated better values for FT-ICR MS in comparison to Orbitrap MS. The third objective focused on optimizing experimental parameters for ESI(±)FT-ICR MS in crude oil analysis. Plackett-Burman filtering planning was used to identify significant parameters, and the optimal analysis conditions were determined through a full factorial design. Global desirability determined by spectral quality metrics served as the response parameter for all experimental designs. The fourth objective aimed to develop a variable selection method that identifies variable correlations (Angular Search Algorithm with Variance Inflation Factor – ASA-VIF) and applies it to high-field 1H NMR, comparing it with MIR and NIR in linear (Partial Least Squares, PLS) and non-linear (Support Vector Regression, SVR) regression. An outlier identification methodology for non-linear models was also created. The results demonstrated that 1H NMR performed better using ASA-VIF-SVR. Furthermore, this selection drastically reduced the amount of information in MIR and NIR compared to 1H NMR, as these instruments contained a greater amount of correlated information (see the first application chapter). The final objective involved constructing a methodology for generating virtual samples (synthetic samples and artificial outliers) in complex data group classification models. This was essential as sample balance is crucial for more reliable metrics. The models showed good performance using virtual samples in both linear (PLS-DA) and non-linear (SVR) methodologies and with highresolution (Orbitrap MS) and low-resolution (MIR) spectra. In conclusion, all objectives resulted in improvements in the treatment of complex data using highresolution techniques.O petróleo é uma matriz complexa e o estudo mais aprofundado da estrutura química (Petroleômica) começou a ser adotado por técnicas de alta resolução, tais como a espectrometria de massas com ressonância ciclotrônica de íons e transformada de Fourier (FT-ICR MS) e ressonância magnética nuclear de alto campo (RMN). Entretanto, a alta resolução pode ocasionar algumas variações nos espectros devido à alta sensibilidade do instrumento que dificultam o processamento espectral. Com isso, o objetivo dessa tese foi desenvolver aplicações envolvendo análise multivariada de dados (classificação, regressão e planejamento de experimentos) para ajudar a suprir algumas limitações da alta resolução. O primeiro objetivo foi estudar a correlação espectral do petróleo em diferentes técnicas instrumentais. Como resultado, identificou-se que, os espectros de alta resolução apresentam perfil mais discreto (variáveis menos correlacionadas), enquanto os espectros de menor resolução apresentam perfil mais contínuo (variáveis mais correlacionadas) sendo melhor aplicados em metodologias quimiométricas de agrupamento de informações. O segundo objetivo foi estimar a precisão intermediária de MS de alta resolução (FT-ICR MS e Orbitrap MS). Percebeu-se que os equipamentos forneceram resultados concordantes de distribuição de classes moleculares para os petróleos analisados. Entretanto, como a FT-ICR MS apresenta maior sensibilidade, a quantidade de sinais estatisticamente atribuídos foi superior à Orbitrap MS e com limite de detecção inferior. Além disso, a repetitividade e precisão intermediária das espectrometrias, apesar de semelhantes, apresentou melhores valores para a FT-ICR MS em comparação ao Orbitrap MS. O terceiro objetivo foi a otimização dos parâmetros experimentais da ESI(±)FT-ICR MS em análises petróleo. Planejamento de Plackett-Burman foi utilizado para filtrar os parâmetros significativos e a condição ótima de análise foi encontrada por planejamento completo. A desejabilidade global determinada por métricas de qualidade espectral foi utilizada como parâmetro de resposta de todos os planejamentos experimentais. O quarto objetivo se baseou em desenvolver método de seleção de variáveis que identifique a correlação das variáveis de Algoritmo de Busca Angular com Fator de Inflação de Variância (ASA-VIF) e aplicar em RMN de 1H de alto campo e comparar com MIR e NIR em regressão linear (Mínimos Quadrados Parciais, PLS) e não linear (regressão por vetores de suporte, SVR). Também foi criado metodologia de identificação de outliers para modelos não lineares. Os resultados mostraram que a RMN de 1H apresentou resultados melhores por ASA-VIF-SVR. Além disso, essa seleção reduziu drasticamente a quantidade de informações de MIR e NIR, comparando-se à RMN de 1H, visto que esses equipamentos apresentam maior quantidade de informações correlacionadas (vide primeiro capítulo de aplicação). O último objetivo foi construir metodologia de criação de amostras virtuais (amostras sintéticas e outliers artificiais) em modelos de classificação de grupos amostrais complexos. Isso porque o balanceamento amostral é crucial para métricas mais confiáveis. Notou-se bom desempenho dos modelos utilizando amostras virtuais na utilização em metodologia linear (PLS-DA) e não linear (SVM) e na utilização de espectros de alta resolução (Orbitrap MS) e baixa resolução (MIR). Por fim, concluise que com análise multivariada bem aplicada é possível garantir a qualidade espectral e assertividade da modelagem quimiométrica.Agência(s) de fomentoTexthttp://repositorio.ufes.br/handle/10/17321porUniversidade Federal do Espírito SantoDoutorado em QuímicaPrograma de Pós-Graduação em QuímicaUFESBRCentro de Ciências Exatassubject.br-rjbnÁrea(s) do conhecimento do documento (Tabela CNPq)Alta resoluçãodados complexossensibilidadeprecisãoperfil espectralcorrelaçãoquimiometriapetroleômicaaprendizado de máquinaAnálise Multivariada de Dados em Petroleômica por Técnicas de Alta Resolução: Espectrometria de Massas de Ressonância Ciclotrônica de Íons por Transformada de Fourier e Ressonância Magnética NuclearMultivariate data analysis in Petroleomics by high resolution techniques: Fourier Transform Ion Cyclotron Resonance Mass Spectrometry and Nuclear Magnetic Resonanceinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)instname:Universidade Federal do Espírito Santo (UFES)instacron:UFESemail@ufes.brORIGINALGabrielySilveiraFolli-2024-tese.pdfGabrielySilveiraFolli-2024-tese.pdfapplication/pdf8114398http://repositorio.ufes.br/bitstreams/f79ae16e-9633-442b-88f6-f2670faa8737/downloadb6623685ae43bdbb34e532c6965757cfMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufes.br/bitstreams/554d40d6-ac9c-401b-ad8c-4035a4363506/download8a4605be74aa9ea9d79846c1fba20a33MD5210/173212024-08-29 11:33:18.369oai:repositorio.ufes.br:10/17321http://repositorio.ufes.brRepositório InstitucionalPUBhttp://repositorio.ufes.br/oai/requestopendoar:21082024-10-15T17:58:04.525906Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)falseTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
dc.title.none.fl_str_mv Análise Multivariada de Dados em Petroleômica por Técnicas de Alta Resolução: Espectrometria de Massas de Ressonância Ciclotrônica de Íons por Transformada de Fourier e Ressonância Magnética Nuclear
dc.title.alternative.none.fl_str_mv Multivariate data analysis in Petroleomics by high resolution techniques: Fourier Transform Ion Cyclotron Resonance Mass Spectrometry and Nuclear Magnetic Resonance
title Análise Multivariada de Dados em Petroleômica por Técnicas de Alta Resolução: Espectrometria de Massas de Ressonância Ciclotrônica de Íons por Transformada de Fourier e Ressonância Magnética Nuclear
spellingShingle Análise Multivariada de Dados em Petroleômica por Técnicas de Alta Resolução: Espectrometria de Massas de Ressonância Ciclotrônica de Íons por Transformada de Fourier e Ressonância Magnética Nuclear
Folli, Gabriely Silveira
Área(s) do conhecimento do documento (Tabela CNPq)
Alta resolução
dados complexos
sensibilidade
precisão
perfil espectral
correlação
quimiometria
petroleômica
aprendizado de máquina
subject.br-rjbn
title_short Análise Multivariada de Dados em Petroleômica por Técnicas de Alta Resolução: Espectrometria de Massas de Ressonância Ciclotrônica de Íons por Transformada de Fourier e Ressonância Magnética Nuclear
title_full Análise Multivariada de Dados em Petroleômica por Técnicas de Alta Resolução: Espectrometria de Massas de Ressonância Ciclotrônica de Íons por Transformada de Fourier e Ressonância Magnética Nuclear
title_fullStr Análise Multivariada de Dados em Petroleômica por Técnicas de Alta Resolução: Espectrometria de Massas de Ressonância Ciclotrônica de Íons por Transformada de Fourier e Ressonância Magnética Nuclear
title_full_unstemmed Análise Multivariada de Dados em Petroleômica por Técnicas de Alta Resolução: Espectrometria de Massas de Ressonância Ciclotrônica de Íons por Transformada de Fourier e Ressonância Magnética Nuclear
title_sort Análise Multivariada de Dados em Petroleômica por Técnicas de Alta Resolução: Espectrometria de Massas de Ressonância Ciclotrônica de Íons por Transformada de Fourier e Ressonância Magnética Nuclear
author Folli, Gabriely Silveira
author_facet Folli, Gabriely Silveira
author_role author
dc.contributor.authorID.none.fl_str_mv https://orcid.org/0000-0003-0665-7540
dc.contributor.authorLattes.none.fl_str_mv http://lattes.cnpq.br/1256230443856795
dc.contributor.advisor-co1.fl_str_mv Romão, Wanderson
dc.contributor.advisor-co1ID.fl_str_mv https://orcid.org/0000-0002-2254-6683
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/9121022613112821
dc.contributor.advisor1.fl_str_mv Filgueiras, Paulo Roberto
dc.contributor.advisor1ID.fl_str_mv https://orcid.org/0000-0003-2617-1601
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/1907915547207861
dc.contributor.author.fl_str_mv Folli, Gabriely Silveira
dc.contributor.referee1.fl_str_mv Neto, Álvaro Cunha
dc.contributor.referee1ID.fl_str_mv https://orcid.org/0000-0002-1814-6214
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/7448379486432052
dc.contributor.referee2.fl_str_mv Rosa, Thalles Ramon
dc.contributor.referee2ID.fl_str_mv https://orcid.org/0000-0001-9913-5885
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/2629035369494897
dc.contributor.referee3.fl_str_mv Terra, Luciana Assis
dc.contributor.referee3ID.fl_str_mv https://orcid.org/0000-0003-2687-9669
dc.contributor.referee3Lattes.fl_str_mv http://lattes.cnpq.br/4918273242518895
dc.contributor.referee4.fl_str_mv Chinelatto Júnior, Luiz Silvino
dc.contributor.referee4ID.fl_str_mv https://orcid.org/0000-0002-0974-0465
dc.contributor.referee4Lattes.fl_str_mv http://lattes.cnpq.br/8008284454162318
contributor_str_mv Romão, Wanderson
Filgueiras, Paulo Roberto
Neto, Álvaro Cunha
Rosa, Thalles Ramon
Terra, Luciana Assis
Chinelatto Júnior, Luiz Silvino
dc.subject.cnpq.fl_str_mv Área(s) do conhecimento do documento (Tabela CNPq)
topic Área(s) do conhecimento do documento (Tabela CNPq)
Alta resolução
dados complexos
sensibilidade
precisão
perfil espectral
correlação
quimiometria
petroleômica
aprendizado de máquina
subject.br-rjbn
dc.subject.por.fl_str_mv Alta resolução
dados complexos
sensibilidade
precisão
perfil espectral
correlação
quimiometria
petroleômica
aprendizado de máquina
dc.subject.br-rjbn.none.fl_str_mv subject.br-rjbn
description Crude oil is a complex matrix, and the more in-depth study of its chemical structure (Petroleomics) has begun to be adopted by high-resolution techniques such as Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and high-field nuclear magnetic resonance (NMR) spectroscopy. However, high-resolution data presents challenges in spectral processing due to spectral variations. Consequently, the objective of this thesis was to develop multivariate data analysis applications (classification, regression, and design of experiments) to help overcome some of the limitations posed by high-resolution data. The first objective was to investigate the spectral profiles of analytical instruments (NMR, FT-ICR MS, nearinfrared – NIR, mid-infrared – MIR, and high-efficiency gas chromatography – HTGC). It was observed that high-resolution spectra predominantly exhibited a discrete profile (less correlated variables), while lower-resolution spectra showed a more continuous profile (more correlated variables), making them better suited for information clustering methodologies. The second objective involved estimating the intermediate precision of high-resolution mass spectrometers (FT-ICR MS and Orbitrap MS). It was noticed that both equipment presented oil with similar classes, but FT-ICR MS attributed a higher number of statistically assigned signals and had a lower detection limit compared to Orbitrap MS, due to its higher sensitivity. Furthermore, repeatability and intermediate precision of both spectrometers, although similar, demonstrated better values for FT-ICR MS in comparison to Orbitrap MS. The third objective focused on optimizing experimental parameters for ESI(±)FT-ICR MS in crude oil analysis. Plackett-Burman filtering planning was used to identify significant parameters, and the optimal analysis conditions were determined through a full factorial design. Global desirability determined by spectral quality metrics served as the response parameter for all experimental designs. The fourth objective aimed to develop a variable selection method that identifies variable correlations (Angular Search Algorithm with Variance Inflation Factor – ASA-VIF) and applies it to high-field 1H NMR, comparing it with MIR and NIR in linear (Partial Least Squares, PLS) and non-linear (Support Vector Regression, SVR) regression. An outlier identification methodology for non-linear models was also created. The results demonstrated that 1H NMR performed better using ASA-VIF-SVR. Furthermore, this selection drastically reduced the amount of information in MIR and NIR compared to 1H NMR, as these instruments contained a greater amount of correlated information (see the first application chapter). The final objective involved constructing a methodology for generating virtual samples (synthetic samples and artificial outliers) in complex data group classification models. This was essential as sample balance is crucial for more reliable metrics. The models showed good performance using virtual samples in both linear (PLS-DA) and non-linear (SVR) methodologies and with highresolution (Orbitrap MS) and low-resolution (MIR) spectra. In conclusion, all objectives resulted in improvements in the treatment of complex data using highresolution techniques.
publishDate 2024
dc.date.accessioned.fl_str_mv 2024-06-14T12:28:21Z
dc.date.available.fl_str_mv 2024-06-14T12:28:21Z
dc.date.issued.fl_str_mv 2024-02-24
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufes.br/handle/10/17321
url http://repositorio.ufes.br/handle/10/17321
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv Text
dc.publisher.none.fl_str_mv Universidade Federal do Espírito Santo
Doutorado em Química
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Química
dc.publisher.initials.fl_str_mv UFES
dc.publisher.country.fl_str_mv BR
dc.publisher.department.fl_str_mv Centro de Ciências Exatas
publisher.none.fl_str_mv Universidade Federal do Espírito Santo
Doutorado em Química
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
instname:Universidade Federal do Espírito Santo (UFES)
instacron:UFES
instname_str Universidade Federal do Espírito Santo (UFES)
instacron_str UFES
institution UFES
reponame_str Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
collection Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
bitstream.url.fl_str_mv http://repositorio.ufes.br/bitstreams/f79ae16e-9633-442b-88f6-f2670faa8737/download
http://repositorio.ufes.br/bitstreams/554d40d6-ac9c-401b-ad8c-4035a4363506/download
bitstream.checksum.fl_str_mv b6623685ae43bdbb34e532c6965757cf
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)
repository.mail.fl_str_mv
_version_ 1813022546609569792