Análise Multivariada de Dados em Petroleômica por Técnicas de Alta Resolução: Espectrometria de Massas de Ressonância Ciclotrônica de Íons por Transformada de Fourier e Ressonância Magnética Nuclear
Autor(a) principal: | |
---|---|
Data de Publicação: | 2024 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
Texto Completo: | http://repositorio.ufes.br/handle/10/17321 |
Resumo: | Crude oil is a complex matrix, and the more in-depth study of its chemical structure (Petroleomics) has begun to be adopted by high-resolution techniques such as Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and high-field nuclear magnetic resonance (NMR) spectroscopy. However, high-resolution data presents challenges in spectral processing due to spectral variations. Consequently, the objective of this thesis was to develop multivariate data analysis applications (classification, regression, and design of experiments) to help overcome some of the limitations posed by high-resolution data. The first objective was to investigate the spectral profiles of analytical instruments (NMR, FT-ICR MS, nearinfrared – NIR, mid-infrared – MIR, and high-efficiency gas chromatography – HTGC). It was observed that high-resolution spectra predominantly exhibited a discrete profile (less correlated variables), while lower-resolution spectra showed a more continuous profile (more correlated variables), making them better suited for information clustering methodologies. The second objective involved estimating the intermediate precision of high-resolution mass spectrometers (FT-ICR MS and Orbitrap MS). It was noticed that both equipment presented oil with similar classes, but FT-ICR MS attributed a higher number of statistically assigned signals and had a lower detection limit compared to Orbitrap MS, due to its higher sensitivity. Furthermore, repeatability and intermediate precision of both spectrometers, although similar, demonstrated better values for FT-ICR MS in comparison to Orbitrap MS. The third objective focused on optimizing experimental parameters for ESI(±)FT-ICR MS in crude oil analysis. Plackett-Burman filtering planning was used to identify significant parameters, and the optimal analysis conditions were determined through a full factorial design. Global desirability determined by spectral quality metrics served as the response parameter for all experimental designs. The fourth objective aimed to develop a variable selection method that identifies variable correlations (Angular Search Algorithm with Variance Inflation Factor – ASA-VIF) and applies it to high-field 1H NMR, comparing it with MIR and NIR in linear (Partial Least Squares, PLS) and non-linear (Support Vector Regression, SVR) regression. An outlier identification methodology for non-linear models was also created. The results demonstrated that 1H NMR performed better using ASA-VIF-SVR. Furthermore, this selection drastically reduced the amount of information in MIR and NIR compared to 1H NMR, as these instruments contained a greater amount of correlated information (see the first application chapter). The final objective involved constructing a methodology for generating virtual samples (synthetic samples and artificial outliers) in complex data group classification models. This was essential as sample balance is crucial for more reliable metrics. The models showed good performance using virtual samples in both linear (PLS-DA) and non-linear (SVR) methodologies and with highresolution (Orbitrap MS) and low-resolution (MIR) spectra. In conclusion, all objectives resulted in improvements in the treatment of complex data using highresolution techniques. |
id |
UFES_494213d339581a3497bf759fb4a2ae5b |
---|---|
oai_identifier_str |
oai:repositorio.ufes.br:10/17321 |
network_acronym_str |
UFES |
network_name_str |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
repository_id_str |
2108 |
spelling |
417Romão, Wandersonhttps://orcid.org/0000-0002-2254-6683http://lattes.cnpq.br/9121022613112821Filgueiras, Paulo Robertohttps://orcid.org/0000-0003-2617-1601http://lattes.cnpq.br/1907915547207861Folli, Gabriely Silveirahttps://orcid.org/0000-0003-0665-7540http://lattes.cnpq.br/1256230443856795Neto, Álvaro Cunhahttps://orcid.org/0000-0002-1814-6214http://lattes.cnpq.br/7448379486432052Rosa, Thalles Ramonhttps://orcid.org/0000-0001-9913-5885http://lattes.cnpq.br/2629035369494897Terra, Luciana Assishttps://orcid.org/0000-0003-2687-9669http://lattes.cnpq.br/4918273242518895Chinelatto Júnior, Luiz Silvinohttps://orcid.org/0000-0002-0974-0465http://lattes.cnpq.br/80082844541623182024-06-14T12:28:21Z2024-06-14T12:28:21Z2024-02-24Crude oil is a complex matrix, and the more in-depth study of its chemical structure (Petroleomics) has begun to be adopted by high-resolution techniques such as Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and high-field nuclear magnetic resonance (NMR) spectroscopy. However, high-resolution data presents challenges in spectral processing due to spectral variations. Consequently, the objective of this thesis was to develop multivariate data analysis applications (classification, regression, and design of experiments) to help overcome some of the limitations posed by high-resolution data. The first objective was to investigate the spectral profiles of analytical instruments (NMR, FT-ICR MS, nearinfrared – NIR, mid-infrared – MIR, and high-efficiency gas chromatography – HTGC). It was observed that high-resolution spectra predominantly exhibited a discrete profile (less correlated variables), while lower-resolution spectra showed a more continuous profile (more correlated variables), making them better suited for information clustering methodologies. The second objective involved estimating the intermediate precision of high-resolution mass spectrometers (FT-ICR MS and Orbitrap MS). It was noticed that both equipment presented oil with similar classes, but FT-ICR MS attributed a higher number of statistically assigned signals and had a lower detection limit compared to Orbitrap MS, due to its higher sensitivity. Furthermore, repeatability and intermediate precision of both spectrometers, although similar, demonstrated better values for FT-ICR MS in comparison to Orbitrap MS. The third objective focused on optimizing experimental parameters for ESI(±)FT-ICR MS in crude oil analysis. Plackett-Burman filtering planning was used to identify significant parameters, and the optimal analysis conditions were determined through a full factorial design. Global desirability determined by spectral quality metrics served as the response parameter for all experimental designs. The fourth objective aimed to develop a variable selection method that identifies variable correlations (Angular Search Algorithm with Variance Inflation Factor – ASA-VIF) and applies it to high-field 1H NMR, comparing it with MIR and NIR in linear (Partial Least Squares, PLS) and non-linear (Support Vector Regression, SVR) regression. An outlier identification methodology for non-linear models was also created. The results demonstrated that 1H NMR performed better using ASA-VIF-SVR. Furthermore, this selection drastically reduced the amount of information in MIR and NIR compared to 1H NMR, as these instruments contained a greater amount of correlated information (see the first application chapter). The final objective involved constructing a methodology for generating virtual samples (synthetic samples and artificial outliers) in complex data group classification models. This was essential as sample balance is crucial for more reliable metrics. The models showed good performance using virtual samples in both linear (PLS-DA) and non-linear (SVR) methodologies and with highresolution (Orbitrap MS) and low-resolution (MIR) spectra. In conclusion, all objectives resulted in improvements in the treatment of complex data using highresolution techniques.O petróleo é uma matriz complexa e o estudo mais aprofundado da estrutura química (Petroleômica) começou a ser adotado por técnicas de alta resolução, tais como a espectrometria de massas com ressonância ciclotrônica de íons e transformada de Fourier (FT-ICR MS) e ressonância magnética nuclear de alto campo (RMN). Entretanto, a alta resolução pode ocasionar algumas variações nos espectros devido à alta sensibilidade do instrumento que dificultam o processamento espectral. Com isso, o objetivo dessa tese foi desenvolver aplicações envolvendo análise multivariada de dados (classificação, regressão e planejamento de experimentos) para ajudar a suprir algumas limitações da alta resolução. O primeiro objetivo foi estudar a correlação espectral do petróleo em diferentes técnicas instrumentais. Como resultado, identificou-se que, os espectros de alta resolução apresentam perfil mais discreto (variáveis menos correlacionadas), enquanto os espectros de menor resolução apresentam perfil mais contínuo (variáveis mais correlacionadas) sendo melhor aplicados em metodologias quimiométricas de agrupamento de informações. O segundo objetivo foi estimar a precisão intermediária de MS de alta resolução (FT-ICR MS e Orbitrap MS). Percebeu-se que os equipamentos forneceram resultados concordantes de distribuição de classes moleculares para os petróleos analisados. Entretanto, como a FT-ICR MS apresenta maior sensibilidade, a quantidade de sinais estatisticamente atribuídos foi superior à Orbitrap MS e com limite de detecção inferior. Além disso, a repetitividade e precisão intermediária das espectrometrias, apesar de semelhantes, apresentou melhores valores para a FT-ICR MS em comparação ao Orbitrap MS. O terceiro objetivo foi a otimização dos parâmetros experimentais da ESI(±)FT-ICR MS em análises petróleo. Planejamento de Plackett-Burman foi utilizado para filtrar os parâmetros significativos e a condição ótima de análise foi encontrada por planejamento completo. A desejabilidade global determinada por métricas de qualidade espectral foi utilizada como parâmetro de resposta de todos os planejamentos experimentais. O quarto objetivo se baseou em desenvolver método de seleção de variáveis que identifique a correlação das variáveis de Algoritmo de Busca Angular com Fator de Inflação de Variância (ASA-VIF) e aplicar em RMN de 1H de alto campo e comparar com MIR e NIR em regressão linear (Mínimos Quadrados Parciais, PLS) e não linear (regressão por vetores de suporte, SVR). Também foi criado metodologia de identificação de outliers para modelos não lineares. Os resultados mostraram que a RMN de 1H apresentou resultados melhores por ASA-VIF-SVR. Além disso, essa seleção reduziu drasticamente a quantidade de informações de MIR e NIR, comparando-se à RMN de 1H, visto que esses equipamentos apresentam maior quantidade de informações correlacionadas (vide primeiro capítulo de aplicação). O último objetivo foi construir metodologia de criação de amostras virtuais (amostras sintéticas e outliers artificiais) em modelos de classificação de grupos amostrais complexos. Isso porque o balanceamento amostral é crucial para métricas mais confiáveis. Notou-se bom desempenho dos modelos utilizando amostras virtuais na utilização em metodologia linear (PLS-DA) e não linear (SVM) e na utilização de espectros de alta resolução (Orbitrap MS) e baixa resolução (MIR). Por fim, concluise que com análise multivariada bem aplicada é possível garantir a qualidade espectral e assertividade da modelagem quimiométrica.Agência(s) de fomentoTexthttp://repositorio.ufes.br/handle/10/17321porUniversidade Federal do Espírito SantoDoutorado em QuímicaPrograma de Pós-Graduação em QuímicaUFESBRCentro de Ciências Exatassubject.br-rjbnÁrea(s) do conhecimento do documento (Tabela CNPq)Alta resoluçãodados complexossensibilidadeprecisãoperfil espectralcorrelaçãoquimiometriapetroleômicaaprendizado de máquinaAnálise Multivariada de Dados em Petroleômica por Técnicas de Alta Resolução: Espectrometria de Massas de Ressonância Ciclotrônica de Íons por Transformada de Fourier e Ressonância Magnética NuclearMultivariate data analysis in Petroleomics by high resolution techniques: Fourier Transform Ion Cyclotron Resonance Mass Spectrometry and Nuclear Magnetic Resonanceinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)instname:Universidade Federal do Espírito Santo (UFES)instacron:UFESemail@ufes.brORIGINALGabrielySilveiraFolli-2024-tese.pdfGabrielySilveiraFolli-2024-tese.pdfapplication/pdf8114398http://repositorio.ufes.br/bitstreams/f79ae16e-9633-442b-88f6-f2670faa8737/downloadb6623685ae43bdbb34e532c6965757cfMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufes.br/bitstreams/554d40d6-ac9c-401b-ad8c-4035a4363506/download8a4605be74aa9ea9d79846c1fba20a33MD5210/173212024-08-29 11:33:18.369oai:repositorio.ufes.br:10/17321http://repositorio.ufes.brRepositório InstitucionalPUBhttp://repositorio.ufes.br/oai/requestopendoar:21082024-10-15T17:58:04.525906Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)falseTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
dc.title.none.fl_str_mv |
Análise Multivariada de Dados em Petroleômica por Técnicas de Alta Resolução: Espectrometria de Massas de Ressonância Ciclotrônica de Íons por Transformada de Fourier e Ressonância Magnética Nuclear |
dc.title.alternative.none.fl_str_mv |
Multivariate data analysis in Petroleomics by high resolution techniques: Fourier Transform Ion Cyclotron Resonance Mass Spectrometry and Nuclear Magnetic Resonance |
title |
Análise Multivariada de Dados em Petroleômica por Técnicas de Alta Resolução: Espectrometria de Massas de Ressonância Ciclotrônica de Íons por Transformada de Fourier e Ressonância Magnética Nuclear |
spellingShingle |
Análise Multivariada de Dados em Petroleômica por Técnicas de Alta Resolução: Espectrometria de Massas de Ressonância Ciclotrônica de Íons por Transformada de Fourier e Ressonância Magnética Nuclear Folli, Gabriely Silveira Área(s) do conhecimento do documento (Tabela CNPq) Alta resolução dados complexos sensibilidade precisão perfil espectral correlação quimiometria petroleômica aprendizado de máquina subject.br-rjbn |
title_short |
Análise Multivariada de Dados em Petroleômica por Técnicas de Alta Resolução: Espectrometria de Massas de Ressonância Ciclotrônica de Íons por Transformada de Fourier e Ressonância Magnética Nuclear |
title_full |
Análise Multivariada de Dados em Petroleômica por Técnicas de Alta Resolução: Espectrometria de Massas de Ressonância Ciclotrônica de Íons por Transformada de Fourier e Ressonância Magnética Nuclear |
title_fullStr |
Análise Multivariada de Dados em Petroleômica por Técnicas de Alta Resolução: Espectrometria de Massas de Ressonância Ciclotrônica de Íons por Transformada de Fourier e Ressonância Magnética Nuclear |
title_full_unstemmed |
Análise Multivariada de Dados em Petroleômica por Técnicas de Alta Resolução: Espectrometria de Massas de Ressonância Ciclotrônica de Íons por Transformada de Fourier e Ressonância Magnética Nuclear |
title_sort |
Análise Multivariada de Dados em Petroleômica por Técnicas de Alta Resolução: Espectrometria de Massas de Ressonância Ciclotrônica de Íons por Transformada de Fourier e Ressonância Magnética Nuclear |
author |
Folli, Gabriely Silveira |
author_facet |
Folli, Gabriely Silveira |
author_role |
author |
dc.contributor.authorID.none.fl_str_mv |
https://orcid.org/0000-0003-0665-7540 |
dc.contributor.authorLattes.none.fl_str_mv |
http://lattes.cnpq.br/1256230443856795 |
dc.contributor.advisor-co1.fl_str_mv |
Romão, Wanderson |
dc.contributor.advisor-co1ID.fl_str_mv |
https://orcid.org/0000-0002-2254-6683 |
dc.contributor.advisor-co1Lattes.fl_str_mv |
http://lattes.cnpq.br/9121022613112821 |
dc.contributor.advisor1.fl_str_mv |
Filgueiras, Paulo Roberto |
dc.contributor.advisor1ID.fl_str_mv |
https://orcid.org/0000-0003-2617-1601 |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/1907915547207861 |
dc.contributor.author.fl_str_mv |
Folli, Gabriely Silveira |
dc.contributor.referee1.fl_str_mv |
Neto, Álvaro Cunha |
dc.contributor.referee1ID.fl_str_mv |
https://orcid.org/0000-0002-1814-6214 |
dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/7448379486432052 |
dc.contributor.referee2.fl_str_mv |
Rosa, Thalles Ramon |
dc.contributor.referee2ID.fl_str_mv |
https://orcid.org/0000-0001-9913-5885 |
dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br/2629035369494897 |
dc.contributor.referee3.fl_str_mv |
Terra, Luciana Assis |
dc.contributor.referee3ID.fl_str_mv |
https://orcid.org/0000-0003-2687-9669 |
dc.contributor.referee3Lattes.fl_str_mv |
http://lattes.cnpq.br/4918273242518895 |
dc.contributor.referee4.fl_str_mv |
Chinelatto Júnior, Luiz Silvino |
dc.contributor.referee4ID.fl_str_mv |
https://orcid.org/0000-0002-0974-0465 |
dc.contributor.referee4Lattes.fl_str_mv |
http://lattes.cnpq.br/8008284454162318 |
contributor_str_mv |
Romão, Wanderson Filgueiras, Paulo Roberto Neto, Álvaro Cunha Rosa, Thalles Ramon Terra, Luciana Assis Chinelatto Júnior, Luiz Silvino |
dc.subject.cnpq.fl_str_mv |
Área(s) do conhecimento do documento (Tabela CNPq) |
topic |
Área(s) do conhecimento do documento (Tabela CNPq) Alta resolução dados complexos sensibilidade precisão perfil espectral correlação quimiometria petroleômica aprendizado de máquina subject.br-rjbn |
dc.subject.por.fl_str_mv |
Alta resolução dados complexos sensibilidade precisão perfil espectral correlação quimiometria petroleômica aprendizado de máquina |
dc.subject.br-rjbn.none.fl_str_mv |
subject.br-rjbn |
description |
Crude oil is a complex matrix, and the more in-depth study of its chemical structure (Petroleomics) has begun to be adopted by high-resolution techniques such as Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and high-field nuclear magnetic resonance (NMR) spectroscopy. However, high-resolution data presents challenges in spectral processing due to spectral variations. Consequently, the objective of this thesis was to develop multivariate data analysis applications (classification, regression, and design of experiments) to help overcome some of the limitations posed by high-resolution data. The first objective was to investigate the spectral profiles of analytical instruments (NMR, FT-ICR MS, nearinfrared – NIR, mid-infrared – MIR, and high-efficiency gas chromatography – HTGC). It was observed that high-resolution spectra predominantly exhibited a discrete profile (less correlated variables), while lower-resolution spectra showed a more continuous profile (more correlated variables), making them better suited for information clustering methodologies. The second objective involved estimating the intermediate precision of high-resolution mass spectrometers (FT-ICR MS and Orbitrap MS). It was noticed that both equipment presented oil with similar classes, but FT-ICR MS attributed a higher number of statistically assigned signals and had a lower detection limit compared to Orbitrap MS, due to its higher sensitivity. Furthermore, repeatability and intermediate precision of both spectrometers, although similar, demonstrated better values for FT-ICR MS in comparison to Orbitrap MS. The third objective focused on optimizing experimental parameters for ESI(±)FT-ICR MS in crude oil analysis. Plackett-Burman filtering planning was used to identify significant parameters, and the optimal analysis conditions were determined through a full factorial design. Global desirability determined by spectral quality metrics served as the response parameter for all experimental designs. The fourth objective aimed to develop a variable selection method that identifies variable correlations (Angular Search Algorithm with Variance Inflation Factor – ASA-VIF) and applies it to high-field 1H NMR, comparing it with MIR and NIR in linear (Partial Least Squares, PLS) and non-linear (Support Vector Regression, SVR) regression. An outlier identification methodology for non-linear models was also created. The results demonstrated that 1H NMR performed better using ASA-VIF-SVR. Furthermore, this selection drastically reduced the amount of information in MIR and NIR compared to 1H NMR, as these instruments contained a greater amount of correlated information (see the first application chapter). The final objective involved constructing a methodology for generating virtual samples (synthetic samples and artificial outliers) in complex data group classification models. This was essential as sample balance is crucial for more reliable metrics. The models showed good performance using virtual samples in both linear (PLS-DA) and non-linear (SVR) methodologies and with highresolution (Orbitrap MS) and low-resolution (MIR) spectra. In conclusion, all objectives resulted in improvements in the treatment of complex data using highresolution techniques. |
publishDate |
2024 |
dc.date.accessioned.fl_str_mv |
2024-06-14T12:28:21Z |
dc.date.available.fl_str_mv |
2024-06-14T12:28:21Z |
dc.date.issued.fl_str_mv |
2024-02-24 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositorio.ufes.br/handle/10/17321 |
url |
http://repositorio.ufes.br/handle/10/17321 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
Text |
dc.publisher.none.fl_str_mv |
Universidade Federal do Espírito Santo Doutorado em Química |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Química |
dc.publisher.initials.fl_str_mv |
UFES |
dc.publisher.country.fl_str_mv |
BR |
dc.publisher.department.fl_str_mv |
Centro de Ciências Exatas |
publisher.none.fl_str_mv |
Universidade Federal do Espírito Santo Doutorado em Química |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) instname:Universidade Federal do Espírito Santo (UFES) instacron:UFES |
instname_str |
Universidade Federal do Espírito Santo (UFES) |
instacron_str |
UFES |
institution |
UFES |
reponame_str |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
collection |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
bitstream.url.fl_str_mv |
http://repositorio.ufes.br/bitstreams/f79ae16e-9633-442b-88f6-f2670faa8737/download http://repositorio.ufes.br/bitstreams/554d40d6-ac9c-401b-ad8c-4035a4363506/download |
bitstream.checksum.fl_str_mv |
b6623685ae43bdbb34e532c6965757cf 8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES) |
repository.mail.fl_str_mv |
|
_version_ |
1813022546609569792 |