Análise das hospitalizações por Covid-19 no Estado do Espírito Santo

Detalhes bibliográficos
Autor(a) principal: Garbin, Juliana Rodrigues Tovar
Data de Publicação: 2023
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
Texto Completo: http://repositorio.ufes.br/handle/10/12307
Resumo: Introduction: For about three years, the world experienced the pandemic of a disease caused by the new coronavirus (SARS-CoV-2): COVID-19, which has become one of the greatest health challenges on a global scale in this century. Aim: To analyze hospitalizations due to COVID-19 in the State of Espírito Santo from 2020 to 2021. Methodology: for the three articles, we chose to use the analytical, retrospective type of study. In article 1, survival analysis was used, where the dependent variable of interest was the time elapsed from the first day of hospitalization until the onset of death from COVID-19. The second article analyzed the mean length of hospitalization for COVID-19 in different waves and the third analyzed the risk factors associated with long-term hospitalization in patients with COVID-19. The analysis began by organizing the databases in the Microsoft Excel version 10 program, and later IBM SPSS Statistics version 24 and STATA version 14 were used. For article 1, multiple logistic regression was performed with the selection method of forward variables, Log-rank test and Cox regression. In article 2, to analyze the distribution of hospitalizations according to waves, the non-parametric Kruskal-Wallis test was used. In article 3, bivariate analyzes were performed using the chi-square test for heterogeneity. Subsequently, the crude and adjusted Odds / Odds Ratio (RO/OR) and their respective 95% confidence intervals were calculated using the logistic regression model. The alpha level of significance used in all analyzes was 5%. The present study was submitted for approval by the Secretary of State for Health of Espírito Santo and the research ethics committee, through the brasil platform under the consubstantiated opinion number 5.180.941 of December 20, 2021. Results: In article 1, the mean age of the group was 58 years (SD ± 18.3) and the mean length of hospital stay was 10.5 days (SD ± 11.8).p < 0.001, age group of 60 to 79 years (HR: 1.62; p < 0.001) and 80 years or older (HR = 2.56; p < 0.001), presence of chronic cardiovascular disease (HR = 1.18; p = 0.028), chronic chronic kidney disease (HR = 1.5; p = 0.004), smoking (HR = 1.41; p < 0.001), obesity (HR = 2.28; p < 0.001), neoplasms (HR = 1.81; p < 0.001) and chronic neurological disease (HR = 1.68; p< 0.001). In article 2, the average length of stay in the hospital was associated with the following characteristics of the patients: age groups up to 59 years old and from 60 to 79 years old, high school and higher education, white and non-white race, female and male gender and resident from the urban area (p<0.05). With regard to the presence of comorbidities, there was a statistically significant difference for the mean days of hospitalization among patients with chronic cardiovascular disease, diabetes mellitus and obesity (p<0.05). In article 03, regarding the associated factors, in the first wave, the chance of having a long hospitalization was greater in elderly patients (OR = 1.67; 95%CI 1.35-2.06, p<0.001), in individuals with 10 or more symptoms (OR=2.03; 95%CI 1.04-3.94, p<0.05), obese (OR=2.0; 95%CI 1.53- 2.74) and with two or more more comorbidities (OR= 2.22; 95%CI 1.71-2.89, p<0.05). In the second wave, in individuals aged 60 years or more (OR=2.04; 95% CI 1.58-2.62, p<0.001) and with two or more comorbidities (OR= 1.77; 95% CI 1.29-2.41, p<0.001). Individuals with 8 to 11 years of education were 36% less likely (OR= 0.64; 95% CI 0.46 to 0.90) than individuals with 12 years or more. As for the third wave, in individuals aged 60 years or more (OR= 1.89; 95%CI 1.65- 2.17, p<0.001), with five to nine symptoms (OR= 1.52; 95%CI 1, 20-1.92, p<0.001), obese (OR= 2.2; 95% CI 1.78-2.73, p<0.001) and with one/two or more comorbidities (OR= 1.45; CI 95 %: 1.22-1.72 and OR= 2.0, 95%CI: 1.69-2.45, p<0.001). Conclusion: Taking into account that diseases do not occur by chance, as they are guided by social and health determinants, and that the pandemic caused by the new coronavirus reached different groups of society, the present study is of great relevance for Collective Health , as it allowed the identification of priority groups, being able to direct the implementation of more specific prevention and control strategies, such as those that protect the elderly, pregnant women, people with low education, with comorbidities and prioritize testing for early detection of positive cases.
id UFES_549e8f3ce816ce29d26d54fd8359f3ce
oai_identifier_str oai:repositorio.ufes.br:10/12307
network_acronym_str UFES
network_name_str Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
repository_id_str 2108
spelling Leite, Franciele Marabotti Costahttps://orcid.org/0000000261716972http://lattes.cnpq.br/7170760158919766Garbin, Juliana Rodrigues Tovarhttps://orcid.org/0000-0002-8184-7822http://lattes.cnpq.br/2189705200630988Sarti, Thiago Diashttps://orcid.org/0000000215456276http://lattes.cnpq.br/7489127535403969Portugal, Flavia Batistahttps://orcid.org/0000000244252627http://lattes.cnpq.br/1876697154549534Ferreira, Glenda Roberta Oliveira NaiffSantos, Carolina Rocio Oliveira2024-05-29T20:55:08Z2024-05-29T20:55:08Z2023-08-17Introduction: For about three years, the world experienced the pandemic of a disease caused by the new coronavirus (SARS-CoV-2): COVID-19, which has become one of the greatest health challenges on a global scale in this century. Aim: To analyze hospitalizations due to COVID-19 in the State of Espírito Santo from 2020 to 2021. Methodology: for the three articles, we chose to use the analytical, retrospective type of study. In article 1, survival analysis was used, where the dependent variable of interest was the time elapsed from the first day of hospitalization until the onset of death from COVID-19. The second article analyzed the mean length of hospitalization for COVID-19 in different waves and the third analyzed the risk factors associated with long-term hospitalization in patients with COVID-19. The analysis began by organizing the databases in the Microsoft Excel version 10 program, and later IBM SPSS Statistics version 24 and STATA version 14 were used. For article 1, multiple logistic regression was performed with the selection method of forward variables, Log-rank test and Cox regression. In article 2, to analyze the distribution of hospitalizations according to waves, the non-parametric Kruskal-Wallis test was used. In article 3, bivariate analyzes were performed using the chi-square test for heterogeneity. Subsequently, the crude and adjusted Odds / Odds Ratio (RO/OR) and their respective 95% confidence intervals were calculated using the logistic regression model. The alpha level of significance used in all analyzes was 5%. The present study was submitted for approval by the Secretary of State for Health of Espírito Santo and the research ethics committee, through the brasil platform under the consubstantiated opinion number 5.180.941 of December 20, 2021. Results: In article 1, the mean age of the group was 58 years (SD ± 18.3) and the mean length of hospital stay was 10.5 days (SD ± 11.8).p < 0.001, age group of 60 to 79 years (HR: 1.62; p < 0.001) and 80 years or older (HR = 2.56; p < 0.001), presence of chronic cardiovascular disease (HR = 1.18; p = 0.028), chronic chronic kidney disease (HR = 1.5; p = 0.004), smoking (HR = 1.41; p < 0.001), obesity (HR = 2.28; p < 0.001), neoplasms (HR = 1.81; p < 0.001) and chronic neurological disease (HR = 1.68; p< 0.001). In article 2, the average length of stay in the hospital was associated with the following characteristics of the patients: age groups up to 59 years old and from 60 to 79 years old, high school and higher education, white and non-white race, female and male gender and resident from the urban area (p<0.05). With regard to the presence of comorbidities, there was a statistically significant difference for the mean days of hospitalization among patients with chronic cardiovascular disease, diabetes mellitus and obesity (p<0.05). In article 03, regarding the associated factors, in the first wave, the chance of having a long hospitalization was greater in elderly patients (OR = 1.67; 95%CI 1.35-2.06, p<0.001), in individuals with 10 or more symptoms (OR=2.03; 95%CI 1.04-3.94, p<0.05), obese (OR=2.0; 95%CI 1.53- 2.74) and with two or more more comorbidities (OR= 2.22; 95%CI 1.71-2.89, p<0.05). In the second wave, in individuals aged 60 years or more (OR=2.04; 95% CI 1.58-2.62, p<0.001) and with two or more comorbidities (OR= 1.77; 95% CI 1.29-2.41, p<0.001). Individuals with 8 to 11 years of education were 36% less likely (OR= 0.64; 95% CI 0.46 to 0.90) than individuals with 12 years or more. As for the third wave, in individuals aged 60 years or more (OR= 1.89; 95%CI 1.65- 2.17, p<0.001), with five to nine symptoms (OR= 1.52; 95%CI 1, 20-1.92, p<0.001), obese (OR= 2.2; 95% CI 1.78-2.73, p<0.001) and with one/two or more comorbidities (OR= 1.45; CI 95 %: 1.22-1.72 and OR= 2.0, 95%CI: 1.69-2.45, p<0.001). Conclusion: Taking into account that diseases do not occur by chance, as they are guided by social and health determinants, and that the pandemic caused by the new coronavirus reached different groups of society, the present study is of great relevance for Collective Health , as it allowed the identification of priority groups, being able to direct the implementation of more specific prevention and control strategies, such as those that protect the elderly, pregnant women, people with low education, with comorbidities and prioritize testing for early detection of positive cases. Introdução: Por cerca de três anos, o mundo vivenciou a pandemia de uma doença provocada pelo novo coronavírus (SARS-CoV-2): a COVID-19, cujo enfrentamento se tornou um dos maiores desafios sanitários em escala global deste século. Objetivo: Analisar as hospitalizações por COVID-19 no Estado do Espírito Santo no período de 2020 a 2021. Metodologia: para os três artigos, optou-se por utilizar o tipo de estudo analítico, retrospectivo. No artigo 1, utilizouse a análise de sobrevida, onde a variável dependente de interesse foi o tempo transcorrido desde o primeiro dia de hospitalização até o aparecimento do óbito por COVID-19. Já o segundo artigo analisou o tempo médio de hospitalização por COVID-19 nas diferentes ondas e o terceiro os fatores de risco associados à hospitalização de longo prazo em pacientes com COVID-19. A análise iniciouse pela organização dos bancos de dados no programa Microsoft Excel versão 10, e posteriormente foi utilizado IBM SPSS Statistics version 24 e o STATA versão 14. Para o artigo 1, foi realizada a regressão logística múltipla com o método de seleção de variáveis forward, teste de Log-rank e regressão de Cox. No artigo 2, para análise da distribuição das hospitalizações conforme as ondas, utilizou-se o teste não paramétrico de Kruskal-Wallis. No artigo 3, as análises bivariadas foram realizadas usando teste qui-quadrado de heterogeneidade. Posteriormente, foram calculadas a Razão de Odds / Odds Ratio (RO/OR), brutas e ajustadas e seus respectivos intervalos de confiança de 95% pelo modelo de regressão logística. O nível alfa de significância utilizado em todas as análises foi de 5%. O presente trabalho foi submetido à aprovação da Secretaria de Estado da Saúde do Espírito Santo e do comitê de ética em pesquisa, através da plataforma brasil sob o parecer consubstanciado de número 5.180.941 de 20 de dezembro de 2021. Resultados: No artigo 1, a média de idade do grupo foi de 58 anos (DP ± 18,3) e o tempo médio de internação hospitalar foi de 10,5 dias (DP ± 11,8).p < 0,001), faixa etária de 60 a 79 anos (HR: 1,62; p < 0,001) e 80 anos ou mais (HR = 2,56; p < 0,001), presença de doença cardiovascular crônica (HR = 1,18; p = 0,028), doença renal crônica (HR = 1,5; p = 0,004), tabagismo (HR = 1,41; p < 0,001), obesidade (HR = 2,28; p < 0,001), neoplasias (HR = 1,81; p < 0,001) e doença neurológica crônica ( FC = 1,68; p< 0,001). No artigo 2, as médias dos dias de permanência no hospital esteve associada as seguintes características dos pacientes: faixas etárias até 59 anos e de 60 a 79 anos, ensino médio e superior, raça cor branca e não branca, sexo feminino e masculino e morador da zona urbana (p<0,05). No que se refere à presença de comorbidades, houve diferença estatisticamente significante para as médias dos dias de hospitalização entre os pacientes com doença cardiovascular crônica, diabetes mellitus e obesidade (p<0,05). No artigo 03, quanto aos fatores associados, na primeira onda, a chance de apresentar uma hospitalização longa foi maior em pacientes idosos (OR = 1,67; IC95% 1,35-2,06, p<0,001), em indivíduos com 10 ou mais sintomas (OR =2,03; IC95% 1,04-3,94, p<0,05), obesos (OR= 2,0; IC95% 1,53- 2,74) e com duas ou mais comorbidades (OR= 2,22; IC95% 1,71-2,89, p<0,05). Já na segunda onda, nos indivíduos com 60 anos ou mais (OR=2,04; IC95% 1,58-2,62, p<0,001) e com duas ou mais comorbidades (OR= 1,77; IC 95% 1,29-2,41, p<0,001). Aqueles indivíduos com 8 a 11 anos de estudo apresentaram 36% menos chance (OR= 0,64; IC 95% 0,46-0,90) que os indivíduos com 12 ou mais anos. Quanto à terceira onda, nos indivíduos com 60 anos ou mais (OR= 1,89; IC95% 1,65-2,17, p<0,001), com cinco a nove sintomas (OR= 1,52; IC95% 1,20-1,92, p<0,001), obesos (OR= 2,2; IC95% 1,78-2,73, p<0,001) e com uma/duas ou mais comorbidades (OR= 1,45; IC 95%: 1,22-1,72 e OR= 2,0, IC95%:1,69-2,45, p<0,001). Conclusão: Levando-se em conta que as doenças não ocorrem por acaso, pois são pautadas por determinantes sociais e de saúde, e que a pandemia provocada pelo novo coronavírus atingiu grupos distintos da sociedade, o presente estudo é de grande relevância para a Saúde Coletiva, visto que permitiu a identificação de grupos prioritários, sendo capaz de direcionar a implementação de estratégias de prevenção e controle mais específicas, como aquelas que protegem idosos, gestantes, pessoas com baixa escolaridade, com comorbidades e priorizar a testagem para detecção precoce de casos positivos.Texthttp://repositorio.ufes.br/handle/10/12307porUniversidade Federal do Espírito SantoDoutorado em Saúde ColetivaPrograma de Pós-Graduação em Saúde ColetivaUFESBRCentro de Ciências da SaúdeSaúde ColetivaInfecções por coronavírusCOVID-19SARS-CoV-2SobrevivênciaHospitalizaçãoVigilância em Saúde PúblicaAnálise das hospitalizações por Covid-19 no Estado do Espírito Santoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)instname:Universidade Federal do Espírito Santo (UFES)instacron:UFESORIGINALJulianaGarbin-2023-Trabalho.pdfapplication/pdf2068310http://repositorio.ufes.br/bitstreams/0f601014-804c-4154-b312-d7e5abc7dbe6/downloadd370819ad337bdb4f2b158dad7373c89MD5110/123072024-09-02 10:02:39.643oai:repositorio.ufes.br:10/12307http://repositorio.ufes.brRepositório InstitucionalPUBhttp://repositorio.ufes.br/oai/requestopendoar:21082024-10-15T17:56:59.091236Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)false
dc.title.none.fl_str_mv Análise das hospitalizações por Covid-19 no Estado do Espírito Santo
title Análise das hospitalizações por Covid-19 no Estado do Espírito Santo
spellingShingle Análise das hospitalizações por Covid-19 no Estado do Espírito Santo
Garbin, Juliana Rodrigues Tovar
Saúde Coletiva
Infecções por coronavírus
COVID-19
SARS-CoV-2
Sobrevivência
Hospitalização
Vigilância em Saúde Pública
title_short Análise das hospitalizações por Covid-19 no Estado do Espírito Santo
title_full Análise das hospitalizações por Covid-19 no Estado do Espírito Santo
title_fullStr Análise das hospitalizações por Covid-19 no Estado do Espírito Santo
title_full_unstemmed Análise das hospitalizações por Covid-19 no Estado do Espírito Santo
title_sort Análise das hospitalizações por Covid-19 no Estado do Espírito Santo
author Garbin, Juliana Rodrigues Tovar
author_facet Garbin, Juliana Rodrigues Tovar
author_role author
dc.contributor.authorID.none.fl_str_mv https://orcid.org/0000-0002-8184-7822
dc.contributor.authorLattes.none.fl_str_mv http://lattes.cnpq.br/2189705200630988
dc.contributor.advisor1.fl_str_mv Leite, Franciele Marabotti Costa
dc.contributor.advisor1ID.fl_str_mv https://orcid.org/0000000261716972
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/7170760158919766
dc.contributor.author.fl_str_mv Garbin, Juliana Rodrigues Tovar
dc.contributor.referee1.fl_str_mv Sarti, Thiago Dias
dc.contributor.referee1ID.fl_str_mv https://orcid.org/0000000215456276
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/7489127535403969
dc.contributor.referee2.fl_str_mv Portugal, Flavia Batista
dc.contributor.referee2ID.fl_str_mv https://orcid.org/0000000244252627
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/1876697154549534
dc.contributor.referee3.fl_str_mv Ferreira, Glenda Roberta Oliveira Naiff
dc.contributor.referee4.fl_str_mv Santos, Carolina Rocio Oliveira
contributor_str_mv Leite, Franciele Marabotti Costa
Sarti, Thiago Dias
Portugal, Flavia Batista
Ferreira, Glenda Roberta Oliveira Naiff
Santos, Carolina Rocio Oliveira
dc.subject.cnpq.fl_str_mv Saúde Coletiva
topic Saúde Coletiva
Infecções por coronavírus
COVID-19
SARS-CoV-2
Sobrevivência
Hospitalização
Vigilância em Saúde Pública
dc.subject.por.fl_str_mv Infecções por coronavírus
COVID-19
SARS-CoV-2
Sobrevivência
Hospitalização
Vigilância em Saúde Pública
description Introduction: For about three years, the world experienced the pandemic of a disease caused by the new coronavirus (SARS-CoV-2): COVID-19, which has become one of the greatest health challenges on a global scale in this century. Aim: To analyze hospitalizations due to COVID-19 in the State of Espírito Santo from 2020 to 2021. Methodology: for the three articles, we chose to use the analytical, retrospective type of study. In article 1, survival analysis was used, where the dependent variable of interest was the time elapsed from the first day of hospitalization until the onset of death from COVID-19. The second article analyzed the mean length of hospitalization for COVID-19 in different waves and the third analyzed the risk factors associated with long-term hospitalization in patients with COVID-19. The analysis began by organizing the databases in the Microsoft Excel version 10 program, and later IBM SPSS Statistics version 24 and STATA version 14 were used. For article 1, multiple logistic regression was performed with the selection method of forward variables, Log-rank test and Cox regression. In article 2, to analyze the distribution of hospitalizations according to waves, the non-parametric Kruskal-Wallis test was used. In article 3, bivariate analyzes were performed using the chi-square test for heterogeneity. Subsequently, the crude and adjusted Odds / Odds Ratio (RO/OR) and their respective 95% confidence intervals were calculated using the logistic regression model. The alpha level of significance used in all analyzes was 5%. The present study was submitted for approval by the Secretary of State for Health of Espírito Santo and the research ethics committee, through the brasil platform under the consubstantiated opinion number 5.180.941 of December 20, 2021. Results: In article 1, the mean age of the group was 58 years (SD ± 18.3) and the mean length of hospital stay was 10.5 days (SD ± 11.8).p < 0.001, age group of 60 to 79 years (HR: 1.62; p < 0.001) and 80 years or older (HR = 2.56; p < 0.001), presence of chronic cardiovascular disease (HR = 1.18; p = 0.028), chronic chronic kidney disease (HR = 1.5; p = 0.004), smoking (HR = 1.41; p < 0.001), obesity (HR = 2.28; p < 0.001), neoplasms (HR = 1.81; p < 0.001) and chronic neurological disease (HR = 1.68; p< 0.001). In article 2, the average length of stay in the hospital was associated with the following characteristics of the patients: age groups up to 59 years old and from 60 to 79 years old, high school and higher education, white and non-white race, female and male gender and resident from the urban area (p<0.05). With regard to the presence of comorbidities, there was a statistically significant difference for the mean days of hospitalization among patients with chronic cardiovascular disease, diabetes mellitus and obesity (p<0.05). In article 03, regarding the associated factors, in the first wave, the chance of having a long hospitalization was greater in elderly patients (OR = 1.67; 95%CI 1.35-2.06, p<0.001), in individuals with 10 or more symptoms (OR=2.03; 95%CI 1.04-3.94, p<0.05), obese (OR=2.0; 95%CI 1.53- 2.74) and with two or more more comorbidities (OR= 2.22; 95%CI 1.71-2.89, p<0.05). In the second wave, in individuals aged 60 years or more (OR=2.04; 95% CI 1.58-2.62, p<0.001) and with two or more comorbidities (OR= 1.77; 95% CI 1.29-2.41, p<0.001). Individuals with 8 to 11 years of education were 36% less likely (OR= 0.64; 95% CI 0.46 to 0.90) than individuals with 12 years or more. As for the third wave, in individuals aged 60 years or more (OR= 1.89; 95%CI 1.65- 2.17, p<0.001), with five to nine symptoms (OR= 1.52; 95%CI 1, 20-1.92, p<0.001), obese (OR= 2.2; 95% CI 1.78-2.73, p<0.001) and with one/two or more comorbidities (OR= 1.45; CI 95 %: 1.22-1.72 and OR= 2.0, 95%CI: 1.69-2.45, p<0.001). Conclusion: Taking into account that diseases do not occur by chance, as they are guided by social and health determinants, and that the pandemic caused by the new coronavirus reached different groups of society, the present study is of great relevance for Collective Health , as it allowed the identification of priority groups, being able to direct the implementation of more specific prevention and control strategies, such as those that protect the elderly, pregnant women, people with low education, with comorbidities and prioritize testing for early detection of positive cases.
publishDate 2023
dc.date.issued.fl_str_mv 2023-08-17
dc.date.accessioned.fl_str_mv 2024-05-29T20:55:08Z
dc.date.available.fl_str_mv 2024-05-29T20:55:08Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufes.br/handle/10/12307
url http://repositorio.ufes.br/handle/10/12307
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv Text
dc.publisher.none.fl_str_mv Universidade Federal do Espírito Santo
Doutorado em Saúde Coletiva
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Saúde Coletiva
dc.publisher.initials.fl_str_mv UFES
dc.publisher.country.fl_str_mv BR
dc.publisher.department.fl_str_mv Centro de Ciências da Saúde
publisher.none.fl_str_mv Universidade Federal do Espírito Santo
Doutorado em Saúde Coletiva
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
instname:Universidade Federal do Espírito Santo (UFES)
instacron:UFES
instname_str Universidade Federal do Espírito Santo (UFES)
instacron_str UFES
institution UFES
reponame_str Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
collection Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
bitstream.url.fl_str_mv http://repositorio.ufes.br/bitstreams/0f601014-804c-4154-b312-d7e5abc7dbe6/download
bitstream.checksum.fl_str_mv d370819ad337bdb4f2b158dad7373c89
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)
repository.mail.fl_str_mv
_version_ 1813022538963353600