Uma contribuição ao estudo de sinais de EEG para avaliar estados emocionais e mentais de crianças com autismo na interação com robô móvel
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
Texto Completo: | http://repositorio.ufes.br/handle/10/1346 |
Resumo: | Autism Spectrum Disorder (ASD) is characterized by a series of cognitive and neurobehavioral disorders and its global prevalence is estimated at 1 child with ASD per 160 children typically developed (TD). Individuals with ASD have difficulty in interpreting others' emotions and expressing feelings. The emotions may be associated to the manifestation of physiological signals, and, among them, the brain signals have been much discussed. The detection of brain signals of children with ASD can be beneficial to clarify their emotions and expressions. Currently, many researches integrate robotics to pedagogical treatment of ASD, through the interaction with children with this disorder, stimulating social skills such as the ability of imitation and communication. The evaluation of mental states of children with ASD during their interaction with a mobile robot is promising and innovative. Therefore, the goals of this study were to capture brain signals of children with ASD and TD, as control group, for the study of their emotional states and to evaluate their mental states during the interaction with a mobile robot, and evaluating also the interaction of these children with the robot, using quantitative scales. The technique of brain signals recording chosen was lectroencephalography (EEG), which uses electrodes placed noninvasively and painless on the scalp. The methods to evaluate the efficiency of the use of the robotics in this interaction were based on two quantitative international scales: Goal Attainment Scaling (GAS) and System Usability Scale (SUS). Results showed that, using EEG, it was possible to classify emotional states of children with ASD and TD and analyze brain activity during the start of the interaction with the robot, through the alpha and beta rhythms. With GAS and SUS scales, it was found that the robot can be considered a potential therapeutic tool for children with ASD. |
id |
UFES_658b5da79eb0a94b1d8febad1a546868 |
---|---|
oai_identifier_str |
oai:repositorio.ufes.br:10/1346 |
network_acronym_str |
UFES |
network_name_str |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
repository_id_str |
2108 |
spelling |
Caldeira, Eliete Maria de OliveiraBastos Filho, Teodiano FreireGoulart, Christiane MaraGouvêa, Sônia AlvesRincon, Adriana Ríos2015-04-14T19:06:50Z2016-06-24T06:00:07Z2015-02-09Autism Spectrum Disorder (ASD) is characterized by a series of cognitive and neurobehavioral disorders and its global prevalence is estimated at 1 child with ASD per 160 children typically developed (TD). Individuals with ASD have difficulty in interpreting others' emotions and expressing feelings. The emotions may be associated to the manifestation of physiological signals, and, among them, the brain signals have been much discussed. The detection of brain signals of children with ASD can be beneficial to clarify their emotions and expressions. Currently, many researches integrate robotics to pedagogical treatment of ASD, through the interaction with children with this disorder, stimulating social skills such as the ability of imitation and communication. The evaluation of mental states of children with ASD during their interaction with a mobile robot is promising and innovative. Therefore, the goals of this study were to capture brain signals of children with ASD and TD, as control group, for the study of their emotional states and to evaluate their mental states during the interaction with a mobile robot, and evaluating also the interaction of these children with the robot, using quantitative scales. The technique of brain signals recording chosen was lectroencephalography (EEG), which uses electrodes placed noninvasively and painless on the scalp. The methods to evaluate the efficiency of the use of the robotics in this interaction were based on two quantitative international scales: Goal Attainment Scaling (GAS) and System Usability Scale (SUS). Results showed that, using EEG, it was possible to classify emotional states of children with ASD and TD and analyze brain activity during the start of the interaction with the robot, through the alpha and beta rhythms. With GAS and SUS scales, it was found that the robot can be considered a potential therapeutic tool for children with ASD.O Transtorno do Espectro do Autismo (TEA) caracteriza-se por uma série de distúrbios cognitivos e neurocomportamentais e sua prevalência mundial é estimada em 1 criança com TEA a cada 160 crianças com típico desenvolvimento (TD). Indivíduos com TEA apresentam dificuldade em interpretar as emoções alheias e em expressar sentimentos. As emoções podem ser associadas à manifestação de sinais fisiológicos, e, dentre eles, os sinais cerebrais têm sido muito abordados. A detecção dos sinais cerebrais de crianças com TEA pode ser benéfica para o esclarecimento de suas emoções e expressões. Atualmente, muitas pesquisas integram a robótica ao tratamento pedagógico do TEA, através da interação com crianças com esse transtorno, estimulando habilidades sociais, como a imitação e a comunicação. A avaliação dos estados mentais de crianças com TEA durante a sua interação com um robô móvel é promissora e assume um aspecto inovador. Assim, os objetivos deste trabalho foram captar sinais cerebrais de crianças com TEA e de crianças com TD, como grupo controle, para o estudo de seus estados emocionais e para avaliar seus estados mentais durante a interação com um robô móvel, e avaliar também a interação dessas crianças com o robô, através de escalas quantitativas. A técnica de registro dos sinais cerebrais escolhida foi a eletroencefalografia (EEG), a qual utiliza eletrodos colocados de forma não invasiva e não dolorosa sobre o couro cabeludo da criança. Os métodos para avaliar a eficiência do uso da robótica nessa interação foram baseados em duas escalas internacionais quantitativas: Escala de Alcance de Metas (do inglês Goal Attainment Scaling - GAS) e Escala de Usabilidade de Sistemas (do inglês System Usability Scale - SUS). Os resultados obtidos mostraram que, pela técnica de EEG, foi possível classificar os estados emocionais de crianças com TD e com TEA e analisar a atividade cerebral durante o início da interação com o robô, através dos ritmos alfa e beta. Com as avaliações GAS e SUS, verificou-se que o robô móvel pode ser considerado uma potencial ferramenta terapêutica para crianças com TEA.Texthttp://repositorio.ufes.br/handle/10/1346porUniversidade Federal do Espírito SantoMestrado em BiotecnologiaPrograma de Pós-Graduação em BiotecnologiaUFESBRCentro de Ciências da SaúdeAutism Spectrum Disorder (ASD)Mobile roboticsAutismoEmoçõesRobóticaBiotecnologia61Uma contribuição ao estudo de sinais de EEG para avaliar estados emocionais e mentais de crianças com autismo na interação com robô móvelinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)instname:Universidade Federal do Espírito Santo (UFES)instacron:UFESORIGINALChristiane Mara Goulart.pdfChristiane Mara Goulart.pdfapplication/pdf1869537http://repositorio.ufes.br/bitstreams/3b8dae8f-1779-4b3d-91b4-cacb76474e9e/download41796bc6555e56c8687b28988c86a877MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.ufes.br/bitstreams/35e7f17e-e34c-4d59-b239-84d297691042/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-822376http://repositorio.ufes.br/bitstreams/6b19e8cd-e4f7-4fc7-88fc-ddcba4632735/downloadb292a83e42bd8ad62533bba1395b83ffMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823148http://repositorio.ufes.br/bitstreams/322c8968-63cd-4cf8-ae4a-98808b63f3d1/download9da0b6dfac957114c6a7714714b86306MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufes.br/bitstreams/69e46a19-d1f3-4f5a-8e34-11989294d843/download8a4605be74aa9ea9d79846c1fba20a33MD5510/13462024-07-16 17:09:23.492oai:repositorio.ufes.br:10/1346http://repositorio.ufes.brRepositório InstitucionalPUBhttp://repositorio.ufes.br/oai/requestopendoar:21082024-10-15T18:00:25.742050Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)falseTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
dc.title.none.fl_str_mv |
Uma contribuição ao estudo de sinais de EEG para avaliar estados emocionais e mentais de crianças com autismo na interação com robô móvel |
title |
Uma contribuição ao estudo de sinais de EEG para avaliar estados emocionais e mentais de crianças com autismo na interação com robô móvel |
spellingShingle |
Uma contribuição ao estudo de sinais de EEG para avaliar estados emocionais e mentais de crianças com autismo na interação com robô móvel Goulart, Christiane Mara Autism Spectrum Disorder (ASD) Mobile robotics Biotecnologia Autismo Emoções Robótica 61 |
title_short |
Uma contribuição ao estudo de sinais de EEG para avaliar estados emocionais e mentais de crianças com autismo na interação com robô móvel |
title_full |
Uma contribuição ao estudo de sinais de EEG para avaliar estados emocionais e mentais de crianças com autismo na interação com robô móvel |
title_fullStr |
Uma contribuição ao estudo de sinais de EEG para avaliar estados emocionais e mentais de crianças com autismo na interação com robô móvel |
title_full_unstemmed |
Uma contribuição ao estudo de sinais de EEG para avaliar estados emocionais e mentais de crianças com autismo na interação com robô móvel |
title_sort |
Uma contribuição ao estudo de sinais de EEG para avaliar estados emocionais e mentais de crianças com autismo na interação com robô móvel |
author |
Goulart, Christiane Mara |
author_facet |
Goulart, Christiane Mara |
author_role |
author |
dc.contributor.advisor-co1.fl_str_mv |
Caldeira, Eliete Maria de Oliveira |
dc.contributor.advisor1.fl_str_mv |
Bastos Filho, Teodiano Freire |
dc.contributor.author.fl_str_mv |
Goulart, Christiane Mara |
dc.contributor.referee1.fl_str_mv |
Gouvêa, Sônia Alves |
dc.contributor.referee2.fl_str_mv |
Rincon, Adriana Ríos |
contributor_str_mv |
Caldeira, Eliete Maria de Oliveira Bastos Filho, Teodiano Freire Gouvêa, Sônia Alves Rincon, Adriana Ríos |
dc.subject.eng.fl_str_mv |
Autism Spectrum Disorder (ASD) Mobile robotics |
topic |
Autism Spectrum Disorder (ASD) Mobile robotics Biotecnologia Autismo Emoções Robótica 61 |
dc.subject.cnpq.fl_str_mv |
Biotecnologia |
dc.subject.br-rjbn.none.fl_str_mv |
Autismo Emoções Robótica |
dc.subject.udc.none.fl_str_mv |
61 |
description |
Autism Spectrum Disorder (ASD) is characterized by a series of cognitive and neurobehavioral disorders and its global prevalence is estimated at 1 child with ASD per 160 children typically developed (TD). Individuals with ASD have difficulty in interpreting others' emotions and expressing feelings. The emotions may be associated to the manifestation of physiological signals, and, among them, the brain signals have been much discussed. The detection of brain signals of children with ASD can be beneficial to clarify their emotions and expressions. Currently, many researches integrate robotics to pedagogical treatment of ASD, through the interaction with children with this disorder, stimulating social skills such as the ability of imitation and communication. The evaluation of mental states of children with ASD during their interaction with a mobile robot is promising and innovative. Therefore, the goals of this study were to capture brain signals of children with ASD and TD, as control group, for the study of their emotional states and to evaluate their mental states during the interaction with a mobile robot, and evaluating also the interaction of these children with the robot, using quantitative scales. The technique of brain signals recording chosen was lectroencephalography (EEG), which uses electrodes placed noninvasively and painless on the scalp. The methods to evaluate the efficiency of the use of the robotics in this interaction were based on two quantitative international scales: Goal Attainment Scaling (GAS) and System Usability Scale (SUS). Results showed that, using EEG, it was possible to classify emotional states of children with ASD and TD and analyze brain activity during the start of the interaction with the robot, through the alpha and beta rhythms. With GAS and SUS scales, it was found that the robot can be considered a potential therapeutic tool for children with ASD. |
publishDate |
2015 |
dc.date.accessioned.fl_str_mv |
2015-04-14T19:06:50Z |
dc.date.issued.fl_str_mv |
2015-02-09 |
dc.date.available.fl_str_mv |
2016-06-24T06:00:07Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositorio.ufes.br/handle/10/1346 |
url |
http://repositorio.ufes.br/handle/10/1346 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
Text |
dc.publisher.none.fl_str_mv |
Universidade Federal do Espírito Santo Mestrado em Biotecnologia |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Biotecnologia |
dc.publisher.initials.fl_str_mv |
UFES |
dc.publisher.country.fl_str_mv |
BR |
dc.publisher.department.fl_str_mv |
Centro de Ciências da Saúde |
publisher.none.fl_str_mv |
Universidade Federal do Espírito Santo Mestrado em Biotecnologia |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) instname:Universidade Federal do Espírito Santo (UFES) instacron:UFES |
instname_str |
Universidade Federal do Espírito Santo (UFES) |
instacron_str |
UFES |
institution |
UFES |
reponame_str |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
collection |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
bitstream.url.fl_str_mv |
http://repositorio.ufes.br/bitstreams/3b8dae8f-1779-4b3d-91b4-cacb76474e9e/download http://repositorio.ufes.br/bitstreams/35e7f17e-e34c-4d59-b239-84d297691042/download http://repositorio.ufes.br/bitstreams/6b19e8cd-e4f7-4fc7-88fc-ddcba4632735/download http://repositorio.ufes.br/bitstreams/322c8968-63cd-4cf8-ae4a-98808b63f3d1/download http://repositorio.ufes.br/bitstreams/69e46a19-d1f3-4f5a-8e34-11989294d843/download |
bitstream.checksum.fl_str_mv |
41796bc6555e56c8687b28988c86a877 4afdbb8c545fd630ea7db775da747b2f b292a83e42bd8ad62533bba1395b83ff 9da0b6dfac957114c6a7714714b86306 8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES) |
repository.mail.fl_str_mv |
|
_version_ |
1813022563980279808 |