Combining heterogeneous data and deep learning models for skin cancer detection
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
Texto Completo: | http://repositorio.ufes.br/handle/10/14433 |
Resumo: | Currently, Deep Neural Networks (DNN) are the most successful and common methodologies to tackle medical image analysis. Despite the success, applying Deep Learning for these types of problems involves several challenges such as the lack of large training |
id |
UFES_73abdbfabf9f7d4049afaf662d6308d2 |
---|---|
oai_identifier_str |
oai:repositorio.ufes.br:10/14433 |
network_acronym_str |
UFES |
network_name_str |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
repository_id_str |
2108 |
spelling |
Krohling, Renato Antoniohttps://orcid.org/http://lattes.cnpq.br/5300435085221378Pacheco, Andre Georghton Cardosohttps://orcid.org/http://lattes.cnpq.br/Mota, Vinicius Fernandes Soareshttps://orcid.org/http://lattes.cnpq.br/9305955394665920Cavalieri, Daniel Cruzhttps://orcid.org/http://lattes.cnpq.br/Papa, Joao Paulohttps://orcid.org/http://lattes.cnpq.br/Santos, Celso Alberto Saibelhttps://orcid.org/0000000232875843http://lattes.cnpq.br/76142061641741512024-05-30T00:49:10Z2024-05-30T00:49:10Z2020-11-12Currently, Deep Neural Networks (DNN) are the most successful and common methodologies to tackle medical image analysis. Despite the success, applying Deep Learning for these types of problems involves several challenges such as the lack of large trainingCurrently, Deep Neural Networks (DNN) are the most successful and common methodologies to tackle medical image analysis. Despite the success, applying Deep Learning for these types of problems involves several challenges such as the lack of large trainingFundação Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Texthttp://repositorio.ufes.br/handle/10/14433porUniversidade Federal do Espírito SantoDoutorado em Ciência da ComputaçãoPrograma de Pós-Graduação em InformáticaUFESBRCentro Tecnológicosubject.br-rjbnCiência da ComputaçãoPalavra-chaveCombining heterogeneous data and deep learning models for skin cancer detectionCombining heterogeneous data and deep learning models for skin cancer detectioninfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)instname:Universidade Federal do Espírito Santo (UFES)instacron:UFESORIGINALAndreGeorghtonCardosoPacheco-2020-tese.pdfapplication/pdf16277162http://repositorio.ufes.br/bitstreams/23489f67-fdf4-4aa8-8da2-96e63696a7d4/download024129df09a3a24661d238db4c869676MD5110/144332024-07-18 06:00:10.641oai:repositorio.ufes.br:10/14433http://repositorio.ufes.brRepositório InstitucionalPUBhttp://repositorio.ufes.br/oai/requestopendoar:21082024-10-15T18:01:41.474108Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)false |
dc.title.none.fl_str_mv |
Combining heterogeneous data and deep learning models for skin cancer detection |
dc.title.alternative.none.fl_str_mv |
Combining heterogeneous data and deep learning models for skin cancer detection |
title |
Combining heterogeneous data and deep learning models for skin cancer detection |
spellingShingle |
Combining heterogeneous data and deep learning models for skin cancer detection Pacheco, Andre Georghton Cardoso Ciência da Computação Palavra-chave subject.br-rjbn |
title_short |
Combining heterogeneous data and deep learning models for skin cancer detection |
title_full |
Combining heterogeneous data and deep learning models for skin cancer detection |
title_fullStr |
Combining heterogeneous data and deep learning models for skin cancer detection |
title_full_unstemmed |
Combining heterogeneous data and deep learning models for skin cancer detection |
title_sort |
Combining heterogeneous data and deep learning models for skin cancer detection |
author |
Pacheco, Andre Georghton Cardoso |
author_facet |
Pacheco, Andre Georghton Cardoso |
author_role |
author |
dc.contributor.authorID.none.fl_str_mv |
https://orcid.org/ |
dc.contributor.authorLattes.none.fl_str_mv |
http://lattes.cnpq.br/ |
dc.contributor.advisor1.fl_str_mv |
Krohling, Renato Antonio |
dc.contributor.advisor1ID.fl_str_mv |
https://orcid.org/ |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/5300435085221378 |
dc.contributor.author.fl_str_mv |
Pacheco, Andre Georghton Cardoso |
dc.contributor.referee1.fl_str_mv |
Mota, Vinicius Fernandes Soares |
dc.contributor.referee1ID.fl_str_mv |
https://orcid.org/ |
dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/9305955394665920 |
dc.contributor.referee2.fl_str_mv |
Cavalieri, Daniel Cruz |
dc.contributor.referee2ID.fl_str_mv |
https://orcid.org/ |
dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br/ |
dc.contributor.referee3.fl_str_mv |
Papa, Joao Paulo |
dc.contributor.referee3ID.fl_str_mv |
https://orcid.org/ |
dc.contributor.referee3Lattes.fl_str_mv |
http://lattes.cnpq.br/ |
dc.contributor.referee4.fl_str_mv |
Santos, Celso Alberto Saibel |
dc.contributor.referee4ID.fl_str_mv |
https://orcid.org/0000000232875843 |
dc.contributor.referee4Lattes.fl_str_mv |
http://lattes.cnpq.br/7614206164174151 |
contributor_str_mv |
Krohling, Renato Antonio Mota, Vinicius Fernandes Soares Cavalieri, Daniel Cruz Papa, Joao Paulo Santos, Celso Alberto Saibel |
dc.subject.cnpq.fl_str_mv |
Ciência da Computação |
topic |
Ciência da Computação Palavra-chave subject.br-rjbn |
dc.subject.por.fl_str_mv |
Palavra-chave |
dc.subject.br-rjbn.none.fl_str_mv |
subject.br-rjbn |
description |
Currently, Deep Neural Networks (DNN) are the most successful and common methodologies to tackle medical image analysis. Despite the success, applying Deep Learning for these types of problems involves several challenges such as the lack of large training |
publishDate |
2020 |
dc.date.issued.fl_str_mv |
2020-11-12 |
dc.date.accessioned.fl_str_mv |
2024-05-30T00:49:10Z |
dc.date.available.fl_str_mv |
2024-05-30T00:49:10Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositorio.ufes.br/handle/10/14433 |
url |
http://repositorio.ufes.br/handle/10/14433 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
Text |
dc.publisher.none.fl_str_mv |
Universidade Federal do Espírito Santo Doutorado em Ciência da Computação |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Informática |
dc.publisher.initials.fl_str_mv |
UFES |
dc.publisher.country.fl_str_mv |
BR |
dc.publisher.department.fl_str_mv |
Centro Tecnológico |
publisher.none.fl_str_mv |
Universidade Federal do Espírito Santo Doutorado em Ciência da Computação |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) instname:Universidade Federal do Espírito Santo (UFES) instacron:UFES |
instname_str |
Universidade Federal do Espírito Santo (UFES) |
instacron_str |
UFES |
institution |
UFES |
reponame_str |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
collection |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
bitstream.url.fl_str_mv |
http://repositorio.ufes.br/bitstreams/23489f67-fdf4-4aa8-8da2-96e63696a7d4/download |
bitstream.checksum.fl_str_mv |
024129df09a3a24661d238db4c869676 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES) |
repository.mail.fl_str_mv |
|
_version_ |
1813022572534562816 |