Caracterização epidemiológica da ferrugem do cafeeiro conilon

Detalhes bibliográficos
Autor(a) principal: Anjos, Breno Benvindo dos
Data de Publicação: 2023
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
Texto Completo: http://repositorio.ufes.br/handle/10/16611
Resumo: Brazil stands out on the world stage as one of the main producers and exporters of coffee. However, the occurrence of diseases, with emphasis on coffee rust, considered the main disease, is one of the main limiting factors in increasing the production and productivity of the crop. Knowledge of the environmental conditions and how they are related to the intensity of the disease allows the planning and evaluation of strategies, helping in decision-making and in the rational elaboration of phytosanitary management for this disease, mitigating the damage and losses caused. Therefore, the objective was to analyze the behavior of rust at different altitudes over time, verifying the variables correlated with the disease intensity and, based on this, to generate a risk prediction model for the conilon coffee leaf rust epidemic. Thus, the thesis was organized into three chapters: 1) Analysis of the temporal progress of conilon coffee leaf rust; 2) Relation of coffee leaf rust intensity in conilon plantations with meteorological variables; 3) Logistic models based on meteorological data to estimate the probability of the occurrence of coffee leaf rust epidemics in conilon trees. For this, four areas of conilon coffee cultivation at different altitudes (<100 m; >100m and <300m; >300m and <500 m; >500m) propagated by seeds were selected. In each area, 80 points were evaluated, from September 2017 to December 2019, at each evaluation the intensity of coffee leaf rust was quantified and meteorological data were obtained from stations installed in each of the evaluated areas. Therefore, it was possible to conclude that the Logistic and Gompertz models were the ones that best fit the conilon coffee leaf rust incidence data, accurately describing the epidemics, with the highest intensity observed >100 m and 500 m. Regarding the meteorological variables, it was found that variables correlated with disease intensity were TMax, TMín, TAvg, TAvgLW(6 pm – 9 am, RH≥90%), TAvgLW(6 pm – 9 am, RH≥80%), TAvgLW(6 pm – 6 am, RH≥90%), TAvgLW(6 pm – 6 am, RH≥80%), NDHT(≥15°C e <26°C). Finally, it was possible to develop a prediction model to estimate the probability of the occurrence of conilon coffee leaf rust using the logistic regression modeling approach.
id UFES_757e6b7eb1ccaa95aa3dedcc9597060b
oai_identifier_str oai:repositorio.ufes.br:10/16611
network_acronym_str UFES
network_name_str Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
repository_id_str 2108
spelling Moraes, Willian Buckerhttps://orcid.org/0000000174787772http://lattes.cnpq.br/6727861982577995Anjos, Breno Benvindo doshttps://orcid.org/0000000313794471http://lattes.cnpq.br/3240160906560507Jesus Junior, Waldir Cintra de https://orcid.org/0000-0001-5711-0268http://lattes.cnpq.br/2614953467362376Alves, Fabio Ramoshttps://orcid.org/0000000182002891http://lattes.cnpq.br/6721628649701157Moraes, Wanderson Buckerhttps://orcid.org/0000-0003-1098-0455http://lattes.cnpq.br/8715721434402222Camara, Guilherme de Resende2024-05-30T01:41:12Z2024-05-30T01:41:12Z2023-02-22Brazil stands out on the world stage as one of the main producers and exporters of coffee. However, the occurrence of diseases, with emphasis on coffee rust, considered the main disease, is one of the main limiting factors in increasing the production and productivity of the crop. Knowledge of the environmental conditions and how they are related to the intensity of the disease allows the planning and evaluation of strategies, helping in decision-making and in the rational elaboration of phytosanitary management for this disease, mitigating the damage and losses caused. Therefore, the objective was to analyze the behavior of rust at different altitudes over time, verifying the variables correlated with the disease intensity and, based on this, to generate a risk prediction model for the conilon coffee leaf rust epidemic. Thus, the thesis was organized into three chapters: 1) Analysis of the temporal progress of conilon coffee leaf rust; 2) Relation of coffee leaf rust intensity in conilon plantations with meteorological variables; 3) Logistic models based on meteorological data to estimate the probability of the occurrence of coffee leaf rust epidemics in conilon trees. For this, four areas of conilon coffee cultivation at different altitudes (<100 m; >100m and <300m; >300m and <500 m; >500m) propagated by seeds were selected. In each area, 80 points were evaluated, from September 2017 to December 2019, at each evaluation the intensity of coffee leaf rust was quantified and meteorological data were obtained from stations installed in each of the evaluated areas. Therefore, it was possible to conclude that the Logistic and Gompertz models were the ones that best fit the conilon coffee leaf rust incidence data, accurately describing the epidemics, with the highest intensity observed >100 m and 500 m. Regarding the meteorological variables, it was found that variables correlated with disease intensity were TMax, TMín, TAvg, TAvgLW(6 pm – 9 am, RH≥90%), TAvgLW(6 pm – 9 am, RH≥80%), TAvgLW(6 pm – 6 am, RH≥90%), TAvgLW(6 pm – 6 am, RH≥80%), NDHT(≥15°C e <26°C). Finally, it was possible to develop a prediction model to estimate the probability of the occurrence of conilon coffee leaf rust using the logistic regression modeling approach.O Brasil se destaca no cenário mundial como um dos principais produtores e exportadores de café. No entanto a ocorrência de doenças é um dos principais fatores limitantes no aumento da produção e produtividade da cultura, com destaque para ferrugem considerada a principal doença do cafeeiro. O conhecimento das condições ambientais e como elas se relacionam com a intensidade da doença permite o planejamento e avaliação das estratégias, auxiliando na tomada de decisão e na elaboração racional de um manejo fitossanitário para esta doença, mitigando os danos e as perdas ocasionados. Portanto, objetivou-se analisar temporalmente o comportamento da ferrugem em diferentes altitudes, verificando as varáveis correlacionadas com a intensidade doença e a partir disso, gerar um modelo de previsão de risco da epidemia da ferrugem do cafeeiro conilon. Deste modo, a tese foi organizada em três capítulos: 1) Análise do progresso temporal da ferrugem do cafeeiro conilon; 2) Relação da intensidade da ferrugem em lavouras de cafeeiro conilon com as variáveis meteorológicas; 3) Modelos logísticos baseados em dados meteorológicos para estimar probabilidade de risco de ocorrência de epidemias da ferrugem em cafeeiro conilon. Para isso foram selecionadas quatro áreas de cultivo de café conilon em diferentes altitudes (<100 m; >100m e <300m; >300m e <500 m; >500m) propagadas por sementes. Em cada área foram avaliados 80 pontos, durante setembro de 2017 a dezembro de 2019, a cada avaliação foi quantificada a intensidade da ferrugem e dados meteorológicos foram obtidos a partir de estações instaladas em cada uma das áreas avaliadas. A partir dos resultados obtidos foi possível concluir que os modelos Logístico e de Gompertz foram os que melhores se ajustaram aos dados de incidência da ferrugem do cafeeiro conilon descrevendo com precisão as epidemias, com as maiores intensidade observadas >100 m e 500 m. Com relação as variáveis meteorológicas, verificou-se que variáveis correlacionadas com intensidade da doenças foram TMáx, TMín, TMéd, TMMF(18h – 9h; UR≥90%), TMMF(18h – 9h; UR≥80%), TMMF(18h – 6h; UR≥90%) e TMMF(18h – 6h; UR≥80%) e NHT(≥15°C e <26°C). Por fim foi possível desenvolver um modelo de previsão para estimar a probabilidade de ocorrência da ferrugem do cafeeiro conilon por meio da abordagem de modelagem de regressão logística.Fundação de Amparo à Pesquisa do Espírito Santo (FAPES)Texthttp://repositorio.ufes.br/handle/10/16611porUniversidade Federal do Espírito SantoDoutorado em AgronomiaPrograma de Pós-Graduação em AgronomiaUFESBRCentro de Ciências Agrárias e Engenhariassubject.br-rjbnAgronomiaAmbienteCoffea canephoraHemileia vastatrixModelagemPrevisãoCaracterização epidemiológica da ferrugem do cafeeiro conilontitle.alternativeinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)instname:Universidade Federal do Espírito Santo (UFES)instacron:UFESORIGINALBrenoBenvindodosAnjos-2023-tese.pdfapplication/pdf1176049http://repositorio.ufes.br/bitstreams/6e2bdfa8-68de-4c2d-a6b9-642af81b5cf6/download857f3498fdd79e8a6160f2d8e6d1d577MD5110/166112024-08-29 11:25:10.458oai:repositorio.ufes.br:10/16611http://repositorio.ufes.brRepositório InstitucionalPUBhttp://repositorio.ufes.br/oai/requestopendoar:21082024-10-15T17:54:53.793410Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)false
dc.title.none.fl_str_mv Caracterização epidemiológica da ferrugem do cafeeiro conilon
dc.title.alternative.none.fl_str_mv title.alternative
title Caracterização epidemiológica da ferrugem do cafeeiro conilon
spellingShingle Caracterização epidemiológica da ferrugem do cafeeiro conilon
Anjos, Breno Benvindo dos
Agronomia
Ambiente
Coffea canephora
Hemileia vastatrix
Modelagem
Previsão
subject.br-rjbn
title_short Caracterização epidemiológica da ferrugem do cafeeiro conilon
title_full Caracterização epidemiológica da ferrugem do cafeeiro conilon
title_fullStr Caracterização epidemiológica da ferrugem do cafeeiro conilon
title_full_unstemmed Caracterização epidemiológica da ferrugem do cafeeiro conilon
title_sort Caracterização epidemiológica da ferrugem do cafeeiro conilon
author Anjos, Breno Benvindo dos
author_facet Anjos, Breno Benvindo dos
author_role author
dc.contributor.authorID.none.fl_str_mv https://orcid.org/0000000313794471
dc.contributor.authorLattes.none.fl_str_mv http://lattes.cnpq.br/3240160906560507
dc.contributor.advisor1.fl_str_mv Moraes, Willian Bucker
dc.contributor.advisor1ID.fl_str_mv https://orcid.org/0000000174787772
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/6727861982577995
dc.contributor.author.fl_str_mv Anjos, Breno Benvindo dos
dc.contributor.referee1.fl_str_mv Jesus Junior, Waldir Cintra de
dc.contributor.referee1ID.fl_str_mv https://orcid.org/0000-0001-5711-0268
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/2614953467362376
dc.contributor.referee2.fl_str_mv Alves, Fabio Ramos
dc.contributor.referee2ID.fl_str_mv https://orcid.org/0000000182002891
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/6721628649701157
dc.contributor.referee3.fl_str_mv Moraes, Wanderson Bucker
dc.contributor.referee3ID.fl_str_mv https://orcid.org/0000-0003-1098-0455
dc.contributor.referee3Lattes.fl_str_mv http://lattes.cnpq.br/8715721434402222
dc.contributor.referee4.fl_str_mv Camara, Guilherme de Resende
contributor_str_mv Moraes, Willian Bucker
Jesus Junior, Waldir Cintra de
Alves, Fabio Ramos
Moraes, Wanderson Bucker
Camara, Guilherme de Resende
dc.subject.cnpq.fl_str_mv Agronomia
topic Agronomia
Ambiente
Coffea canephora
Hemileia vastatrix
Modelagem
Previsão
subject.br-rjbn
dc.subject.por.fl_str_mv Ambiente
Coffea canephora
Hemileia vastatrix
Modelagem
Previsão
dc.subject.br-rjbn.none.fl_str_mv subject.br-rjbn
description Brazil stands out on the world stage as one of the main producers and exporters of coffee. However, the occurrence of diseases, with emphasis on coffee rust, considered the main disease, is one of the main limiting factors in increasing the production and productivity of the crop. Knowledge of the environmental conditions and how they are related to the intensity of the disease allows the planning and evaluation of strategies, helping in decision-making and in the rational elaboration of phytosanitary management for this disease, mitigating the damage and losses caused. Therefore, the objective was to analyze the behavior of rust at different altitudes over time, verifying the variables correlated with the disease intensity and, based on this, to generate a risk prediction model for the conilon coffee leaf rust epidemic. Thus, the thesis was organized into three chapters: 1) Analysis of the temporal progress of conilon coffee leaf rust; 2) Relation of coffee leaf rust intensity in conilon plantations with meteorological variables; 3) Logistic models based on meteorological data to estimate the probability of the occurrence of coffee leaf rust epidemics in conilon trees. For this, four areas of conilon coffee cultivation at different altitudes (<100 m; >100m and <300m; >300m and <500 m; >500m) propagated by seeds were selected. In each area, 80 points were evaluated, from September 2017 to December 2019, at each evaluation the intensity of coffee leaf rust was quantified and meteorological data were obtained from stations installed in each of the evaluated areas. Therefore, it was possible to conclude that the Logistic and Gompertz models were the ones that best fit the conilon coffee leaf rust incidence data, accurately describing the epidemics, with the highest intensity observed >100 m and 500 m. Regarding the meteorological variables, it was found that variables correlated with disease intensity were TMax, TMín, TAvg, TAvgLW(6 pm – 9 am, RH≥90%), TAvgLW(6 pm – 9 am, RH≥80%), TAvgLW(6 pm – 6 am, RH≥90%), TAvgLW(6 pm – 6 am, RH≥80%), NDHT(≥15°C e <26°C). Finally, it was possible to develop a prediction model to estimate the probability of the occurrence of conilon coffee leaf rust using the logistic regression modeling approach.
publishDate 2023
dc.date.issued.fl_str_mv 2023-02-22
dc.date.accessioned.fl_str_mv 2024-05-30T01:41:12Z
dc.date.available.fl_str_mv 2024-05-30T01:41:12Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufes.br/handle/10/16611
url http://repositorio.ufes.br/handle/10/16611
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv Text
dc.publisher.none.fl_str_mv Universidade Federal do Espírito Santo
Doutorado em Agronomia
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Agronomia
dc.publisher.initials.fl_str_mv UFES
dc.publisher.country.fl_str_mv BR
dc.publisher.department.fl_str_mv Centro de Ciências Agrárias e Engenharias
publisher.none.fl_str_mv Universidade Federal do Espírito Santo
Doutorado em Agronomia
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
instname:Universidade Federal do Espírito Santo (UFES)
instacron:UFES
instname_str Universidade Federal do Espírito Santo (UFES)
instacron_str UFES
institution UFES
reponame_str Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
collection Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
bitstream.url.fl_str_mv http://repositorio.ufes.br/bitstreams/6e2bdfa8-68de-4c2d-a6b9-642af81b5cf6/download
bitstream.checksum.fl_str_mv 857f3498fdd79e8a6160f2d8e6d1d577
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)
repository.mail.fl_str_mv
_version_ 1813022524663922688