Caracterização epidemiológica da ferrugem do cafeeiro conilon
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
Texto Completo: | http://repositorio.ufes.br/handle/10/16611 |
Resumo: | Brazil stands out on the world stage as one of the main producers and exporters of coffee. However, the occurrence of diseases, with emphasis on coffee rust, considered the main disease, is one of the main limiting factors in increasing the production and productivity of the crop. Knowledge of the environmental conditions and how they are related to the intensity of the disease allows the planning and evaluation of strategies, helping in decision-making and in the rational elaboration of phytosanitary management for this disease, mitigating the damage and losses caused. Therefore, the objective was to analyze the behavior of rust at different altitudes over time, verifying the variables correlated with the disease intensity and, based on this, to generate a risk prediction model for the conilon coffee leaf rust epidemic. Thus, the thesis was organized into three chapters: 1) Analysis of the temporal progress of conilon coffee leaf rust; 2) Relation of coffee leaf rust intensity in conilon plantations with meteorological variables; 3) Logistic models based on meteorological data to estimate the probability of the occurrence of coffee leaf rust epidemics in conilon trees. For this, four areas of conilon coffee cultivation at different altitudes (<100 m; >100m and <300m; >300m and <500 m; >500m) propagated by seeds were selected. In each area, 80 points were evaluated, from September 2017 to December 2019, at each evaluation the intensity of coffee leaf rust was quantified and meteorological data were obtained from stations installed in each of the evaluated areas. Therefore, it was possible to conclude that the Logistic and Gompertz models were the ones that best fit the conilon coffee leaf rust incidence data, accurately describing the epidemics, with the highest intensity observed >100 m and 500 m. Regarding the meteorological variables, it was found that variables correlated with disease intensity were TMax, TMín, TAvg, TAvgLW(6 pm – 9 am, RH≥90%), TAvgLW(6 pm – 9 am, RH≥80%), TAvgLW(6 pm – 6 am, RH≥90%), TAvgLW(6 pm – 6 am, RH≥80%), NDHT(≥15°C e <26°C). Finally, it was possible to develop a prediction model to estimate the probability of the occurrence of conilon coffee leaf rust using the logistic regression modeling approach. |
id |
UFES_757e6b7eb1ccaa95aa3dedcc9597060b |
---|---|
oai_identifier_str |
oai:repositorio.ufes.br:10/16611 |
network_acronym_str |
UFES |
network_name_str |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
repository_id_str |
2108 |
spelling |
Moraes, Willian Buckerhttps://orcid.org/0000000174787772http://lattes.cnpq.br/6727861982577995Anjos, Breno Benvindo doshttps://orcid.org/0000000313794471http://lattes.cnpq.br/3240160906560507Jesus Junior, Waldir Cintra de https://orcid.org/0000-0001-5711-0268http://lattes.cnpq.br/2614953467362376Alves, Fabio Ramoshttps://orcid.org/0000000182002891http://lattes.cnpq.br/6721628649701157Moraes, Wanderson Buckerhttps://orcid.org/0000-0003-1098-0455http://lattes.cnpq.br/8715721434402222Camara, Guilherme de Resende2024-05-30T01:41:12Z2024-05-30T01:41:12Z2023-02-22Brazil stands out on the world stage as one of the main producers and exporters of coffee. However, the occurrence of diseases, with emphasis on coffee rust, considered the main disease, is one of the main limiting factors in increasing the production and productivity of the crop. Knowledge of the environmental conditions and how they are related to the intensity of the disease allows the planning and evaluation of strategies, helping in decision-making and in the rational elaboration of phytosanitary management for this disease, mitigating the damage and losses caused. Therefore, the objective was to analyze the behavior of rust at different altitudes over time, verifying the variables correlated with the disease intensity and, based on this, to generate a risk prediction model for the conilon coffee leaf rust epidemic. Thus, the thesis was organized into three chapters: 1) Analysis of the temporal progress of conilon coffee leaf rust; 2) Relation of coffee leaf rust intensity in conilon plantations with meteorological variables; 3) Logistic models based on meteorological data to estimate the probability of the occurrence of coffee leaf rust epidemics in conilon trees. For this, four areas of conilon coffee cultivation at different altitudes (<100 m; >100m and <300m; >300m and <500 m; >500m) propagated by seeds were selected. In each area, 80 points were evaluated, from September 2017 to December 2019, at each evaluation the intensity of coffee leaf rust was quantified and meteorological data were obtained from stations installed in each of the evaluated areas. Therefore, it was possible to conclude that the Logistic and Gompertz models were the ones that best fit the conilon coffee leaf rust incidence data, accurately describing the epidemics, with the highest intensity observed >100 m and 500 m. Regarding the meteorological variables, it was found that variables correlated with disease intensity were TMax, TMín, TAvg, TAvgLW(6 pm – 9 am, RH≥90%), TAvgLW(6 pm – 9 am, RH≥80%), TAvgLW(6 pm – 6 am, RH≥90%), TAvgLW(6 pm – 6 am, RH≥80%), NDHT(≥15°C e <26°C). Finally, it was possible to develop a prediction model to estimate the probability of the occurrence of conilon coffee leaf rust using the logistic regression modeling approach.O Brasil se destaca no cenário mundial como um dos principais produtores e exportadores de café. No entanto a ocorrência de doenças é um dos principais fatores limitantes no aumento da produção e produtividade da cultura, com destaque para ferrugem considerada a principal doença do cafeeiro. O conhecimento das condições ambientais e como elas se relacionam com a intensidade da doença permite o planejamento e avaliação das estratégias, auxiliando na tomada de decisão e na elaboração racional de um manejo fitossanitário para esta doença, mitigando os danos e as perdas ocasionados. Portanto, objetivou-se analisar temporalmente o comportamento da ferrugem em diferentes altitudes, verificando as varáveis correlacionadas com a intensidade doença e a partir disso, gerar um modelo de previsão de risco da epidemia da ferrugem do cafeeiro conilon. Deste modo, a tese foi organizada em três capítulos: 1) Análise do progresso temporal da ferrugem do cafeeiro conilon; 2) Relação da intensidade da ferrugem em lavouras de cafeeiro conilon com as variáveis meteorológicas; 3) Modelos logísticos baseados em dados meteorológicos para estimar probabilidade de risco de ocorrência de epidemias da ferrugem em cafeeiro conilon. Para isso foram selecionadas quatro áreas de cultivo de café conilon em diferentes altitudes (<100 m; >100m e <300m; >300m e <500 m; >500m) propagadas por sementes. Em cada área foram avaliados 80 pontos, durante setembro de 2017 a dezembro de 2019, a cada avaliação foi quantificada a intensidade da ferrugem e dados meteorológicos foram obtidos a partir de estações instaladas em cada uma das áreas avaliadas. A partir dos resultados obtidos foi possível concluir que os modelos Logístico e de Gompertz foram os que melhores se ajustaram aos dados de incidência da ferrugem do cafeeiro conilon descrevendo com precisão as epidemias, com as maiores intensidade observadas >100 m e 500 m. Com relação as variáveis meteorológicas, verificou-se que variáveis correlacionadas com intensidade da doenças foram TMáx, TMín, TMéd, TMMF(18h – 9h; UR≥90%), TMMF(18h – 9h; UR≥80%), TMMF(18h – 6h; UR≥90%) e TMMF(18h – 6h; UR≥80%) e NHT(≥15°C e <26°C). Por fim foi possível desenvolver um modelo de previsão para estimar a probabilidade de ocorrência da ferrugem do cafeeiro conilon por meio da abordagem de modelagem de regressão logística.Fundação de Amparo à Pesquisa do Espírito Santo (FAPES)Texthttp://repositorio.ufes.br/handle/10/16611porUniversidade Federal do Espírito SantoDoutorado em AgronomiaPrograma de Pós-Graduação em AgronomiaUFESBRCentro de Ciências Agrárias e Engenhariassubject.br-rjbnAgronomiaAmbienteCoffea canephoraHemileia vastatrixModelagemPrevisãoCaracterização epidemiológica da ferrugem do cafeeiro conilontitle.alternativeinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)instname:Universidade Federal do Espírito Santo (UFES)instacron:UFESORIGINALBrenoBenvindodosAnjos-2023-tese.pdfapplication/pdf1176049http://repositorio.ufes.br/bitstreams/6e2bdfa8-68de-4c2d-a6b9-642af81b5cf6/download857f3498fdd79e8a6160f2d8e6d1d577MD5110/166112024-08-29 11:25:10.458oai:repositorio.ufes.br:10/16611http://repositorio.ufes.brRepositório InstitucionalPUBhttp://repositorio.ufes.br/oai/requestopendoar:21082024-10-15T17:54:53.793410Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)false |
dc.title.none.fl_str_mv |
Caracterização epidemiológica da ferrugem do cafeeiro conilon |
dc.title.alternative.none.fl_str_mv |
title.alternative |
title |
Caracterização epidemiológica da ferrugem do cafeeiro conilon |
spellingShingle |
Caracterização epidemiológica da ferrugem do cafeeiro conilon Anjos, Breno Benvindo dos Agronomia Ambiente Coffea canephora Hemileia vastatrix Modelagem Previsão subject.br-rjbn |
title_short |
Caracterização epidemiológica da ferrugem do cafeeiro conilon |
title_full |
Caracterização epidemiológica da ferrugem do cafeeiro conilon |
title_fullStr |
Caracterização epidemiológica da ferrugem do cafeeiro conilon |
title_full_unstemmed |
Caracterização epidemiológica da ferrugem do cafeeiro conilon |
title_sort |
Caracterização epidemiológica da ferrugem do cafeeiro conilon |
author |
Anjos, Breno Benvindo dos |
author_facet |
Anjos, Breno Benvindo dos |
author_role |
author |
dc.contributor.authorID.none.fl_str_mv |
https://orcid.org/0000000313794471 |
dc.contributor.authorLattes.none.fl_str_mv |
http://lattes.cnpq.br/3240160906560507 |
dc.contributor.advisor1.fl_str_mv |
Moraes, Willian Bucker |
dc.contributor.advisor1ID.fl_str_mv |
https://orcid.org/0000000174787772 |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/6727861982577995 |
dc.contributor.author.fl_str_mv |
Anjos, Breno Benvindo dos |
dc.contributor.referee1.fl_str_mv |
Jesus Junior, Waldir Cintra de |
dc.contributor.referee1ID.fl_str_mv |
https://orcid.org/0000-0001-5711-0268 |
dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/2614953467362376 |
dc.contributor.referee2.fl_str_mv |
Alves, Fabio Ramos |
dc.contributor.referee2ID.fl_str_mv |
https://orcid.org/0000000182002891 |
dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br/6721628649701157 |
dc.contributor.referee3.fl_str_mv |
Moraes, Wanderson Bucker |
dc.contributor.referee3ID.fl_str_mv |
https://orcid.org/0000-0003-1098-0455 |
dc.contributor.referee3Lattes.fl_str_mv |
http://lattes.cnpq.br/8715721434402222 |
dc.contributor.referee4.fl_str_mv |
Camara, Guilherme de Resende |
contributor_str_mv |
Moraes, Willian Bucker Jesus Junior, Waldir Cintra de Alves, Fabio Ramos Moraes, Wanderson Bucker Camara, Guilherme de Resende |
dc.subject.cnpq.fl_str_mv |
Agronomia |
topic |
Agronomia Ambiente Coffea canephora Hemileia vastatrix Modelagem Previsão subject.br-rjbn |
dc.subject.por.fl_str_mv |
Ambiente Coffea canephora Hemileia vastatrix Modelagem Previsão |
dc.subject.br-rjbn.none.fl_str_mv |
subject.br-rjbn |
description |
Brazil stands out on the world stage as one of the main producers and exporters of coffee. However, the occurrence of diseases, with emphasis on coffee rust, considered the main disease, is one of the main limiting factors in increasing the production and productivity of the crop. Knowledge of the environmental conditions and how they are related to the intensity of the disease allows the planning and evaluation of strategies, helping in decision-making and in the rational elaboration of phytosanitary management for this disease, mitigating the damage and losses caused. Therefore, the objective was to analyze the behavior of rust at different altitudes over time, verifying the variables correlated with the disease intensity and, based on this, to generate a risk prediction model for the conilon coffee leaf rust epidemic. Thus, the thesis was organized into three chapters: 1) Analysis of the temporal progress of conilon coffee leaf rust; 2) Relation of coffee leaf rust intensity in conilon plantations with meteorological variables; 3) Logistic models based on meteorological data to estimate the probability of the occurrence of coffee leaf rust epidemics in conilon trees. For this, four areas of conilon coffee cultivation at different altitudes (<100 m; >100m and <300m; >300m and <500 m; >500m) propagated by seeds were selected. In each area, 80 points were evaluated, from September 2017 to December 2019, at each evaluation the intensity of coffee leaf rust was quantified and meteorological data were obtained from stations installed in each of the evaluated areas. Therefore, it was possible to conclude that the Logistic and Gompertz models were the ones that best fit the conilon coffee leaf rust incidence data, accurately describing the epidemics, with the highest intensity observed >100 m and 500 m. Regarding the meteorological variables, it was found that variables correlated with disease intensity were TMax, TMín, TAvg, TAvgLW(6 pm – 9 am, RH≥90%), TAvgLW(6 pm – 9 am, RH≥80%), TAvgLW(6 pm – 6 am, RH≥90%), TAvgLW(6 pm – 6 am, RH≥80%), NDHT(≥15°C e <26°C). Finally, it was possible to develop a prediction model to estimate the probability of the occurrence of conilon coffee leaf rust using the logistic regression modeling approach. |
publishDate |
2023 |
dc.date.issued.fl_str_mv |
2023-02-22 |
dc.date.accessioned.fl_str_mv |
2024-05-30T01:41:12Z |
dc.date.available.fl_str_mv |
2024-05-30T01:41:12Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositorio.ufes.br/handle/10/16611 |
url |
http://repositorio.ufes.br/handle/10/16611 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
Text |
dc.publisher.none.fl_str_mv |
Universidade Federal do Espírito Santo Doutorado em Agronomia |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Agronomia |
dc.publisher.initials.fl_str_mv |
UFES |
dc.publisher.country.fl_str_mv |
BR |
dc.publisher.department.fl_str_mv |
Centro de Ciências Agrárias e Engenharias |
publisher.none.fl_str_mv |
Universidade Federal do Espírito Santo Doutorado em Agronomia |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) instname:Universidade Federal do Espírito Santo (UFES) instacron:UFES |
instname_str |
Universidade Federal do Espírito Santo (UFES) |
instacron_str |
UFES |
institution |
UFES |
reponame_str |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
collection |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
bitstream.url.fl_str_mv |
http://repositorio.ufes.br/bitstreams/6e2bdfa8-68de-4c2d-a6b9-642af81b5cf6/download |
bitstream.checksum.fl_str_mv |
857f3498fdd79e8a6160f2d8e6d1d577 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES) |
repository.mail.fl_str_mv |
|
_version_ |
1813022524663922688 |