Posture Monitoring and Wheelchair Control Using Optical Fiber Pressure Sensors
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
Texto Completo: | http://repositorio.ufes.br/handle/10/16704 |
Resumo: | A posture monitoring system and wheelchair control based on Polymer Optical Fiber (POF) pressure sensors was developed and installed on an electric-powered wheelchair and a neck pillow. The static characteristics of the POF-based pressure sensor are a response time of 33 µs, a mean linearity of 99.11%, a mean resolution of 5.95 mV, and a sensitivity of 3.9 mV/kg. A characterization per sensor, line and matrix of sensors resulted in a linear response, but with variations in the offset of the sensor because of the fiber delays returning to its original state. Moreover, a posture monitoring system was developed both offline and online using Machine Learning techniques. The offline stage used a Butterworth low-pass filter and a Common Average Reference filter in the pre-processing stage. The best result was obtained with the k-Nearest Neighbors (kNN) algorithm, with an accuracy of 99.16% with one-person data. After that, ten healthy people participated in the dataset construction, obtaining a classifier’s accuracy of 98.49% using the Extra Tree Classifier algorithm with an execution time of 2 s. The online classification used a kNN model obtaining an accuracy of 96.87 % with a mean prediction time of 117 ms. Moreover, neck control was implemented in offline and online stages. A features comparison was conducted in the offline stage, and the best accuracy was 85.50% with a Decision Tree algorithm. In the online stage, a Direct Current filter was implemented due to the natural response of the POF. A fuzzy logic controller was developed and validated, obtaining an execution time of 26 ms, moving in four directions (forward, right, left, and stop) when the user was out of the wheelchair. In addition, a head fuzzy controller using a motion capture system was implemented with an execution time of 24 ms moving in five directions including backward. The user was sitting in a wheelchair and the validation of the controller was made in a laboratory room. Future works will be focused on the improvement of the sensors, the inclusion of an obstacle avoidance system, and the neck controller enhancement. |
id |
UFES_85beb55d938604264d29f0cc69738132 |
---|---|
oai_identifier_str |
oai:repositorio.ufes.br:10/16704 |
network_acronym_str |
UFES |
network_name_str |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
repository_id_str |
2108 |
spelling |
Bastos Filho, Teodiano Freirehttps://orcid.org/0000000211852773http://lattes.cnpq.br/3761585497791105Gonzalez-Cely, Aura Ximena https://orcid.org/0000000193040834http://lattes.cnpq.br/2115528029027761Naves, Eduardo Lázaro Martinshttps://orcid.org/0000-0003-4175-723Xhttp://lattes.cnpq.br/5450557733379720Díaz, Camilo Arturo Rodríguezhttps://orcid.org/0000000196575076http://lattes.cnpq.br/2410092083336272Mello, Ricardo Carminati dehttps://orcid.org/0000000304204273http://lattes.cnpq.br/15696385715826912024-05-30T01:41:21Z2024-05-30T01:41:21Z2023-03-02A posture monitoring system and wheelchair control based on Polymer Optical Fiber (POF) pressure sensors was developed and installed on an electric-powered wheelchair and a neck pillow. The static characteristics of the POF-based pressure sensor are a response time of 33 µs, a mean linearity of 99.11%, a mean resolution of 5.95 mV, and a sensitivity of 3.9 mV/kg. A characterization per sensor, line and matrix of sensors resulted in a linear response, but with variations in the offset of the sensor because of the fiber delays returning to its original state. Moreover, a posture monitoring system was developed both offline and online using Machine Learning techniques. The offline stage used a Butterworth low-pass filter and a Common Average Reference filter in the pre-processing stage. The best result was obtained with the k-Nearest Neighbors (kNN) algorithm, with an accuracy of 99.16% with one-person data. After that, ten healthy people participated in the dataset construction, obtaining a classifier’s accuracy of 98.49% using the Extra Tree Classifier algorithm with an execution time of 2 s. The online classification used a kNN model obtaining an accuracy of 96.87 % with a mean prediction time of 117 ms. Moreover, neck control was implemented in offline and online stages. A features comparison was conducted in the offline stage, and the best accuracy was 85.50% with a Decision Tree algorithm. In the online stage, a Direct Current filter was implemented due to the natural response of the POF. A fuzzy logic controller was developed and validated, obtaining an execution time of 26 ms, moving in four directions (forward, right, left, and stop) when the user was out of the wheelchair. In addition, a head fuzzy controller using a motion capture system was implemented with an execution time of 24 ms moving in five directions including backward. The user was sitting in a wheelchair and the validation of the controller was made in a laboratory room. Future works will be focused on the improvement of the sensors, the inclusion of an obstacle avoidance system, and the neck controller enhancement.Este trabalho mostra o desenvolvimento de um sistema de monitoramento de postura e controle de uma cadeira de rodas baseado em sensores de pressão feitos de Fibra Óptica de Polímero (FOP). Tal sistema foi instalado em uma cadeira de rodas elétrica e em uma almofada de pescoço. As características estáticas do sensor de pressão baseado em FOP têm um tempo de resposta de 33 µs, uma linearidade média de 99,11%, resolução média de 5.95 mV e sensibilidade de 3.9 mV/kg. A caracterização foi feita por sensor, linha e matriz de sensores, a qual obteve uma resposta linear, com variações na amplitude do sinal devido ao fato da fibra não retornar ao seu estado original. Adicionalmente, foi desenvolvido um sistema de postura em duas fases (off-line e on-line) utilizando técnicas de aprendizado de máquina. Na fase offline foi utilizado um filtro passa-baixas Butterworth, além de um filtro de referência de média comum na fase de pré-processamento. O melhor resultado foi obtido com o algoritmo k-Nearest Neighbors (k-NN), com uma acurácia de 99,16% com dados de uma única pessoa. Posteriormente, dez pessoas saudáveis participaram da construção do conjunto de dados, obtendo uma acurácia de 98,49% utilizando o algoritmo de classificação Extra Tree Classifier, com tempo de execução de 2 s. A classificação online utilizou um modelo k-NN com uma acurácia de 96,87%, com uma média de tempo de previsão de 117 ms. Além disso, foi implementado um controlador de movimento do pescoço nas fases off-line e on-line. A comparação de características foi feita na fase off-line, e a melhor acurácia foi 85,50% com o algoritmo Decision Tree. Na fase on-line, foi implementado um filtro passa-altas para eliminar a resposta natural da FOP. Foi desenvolvido um controlador de lógica difusa, o qual foi testado quando o usuário não estava sentado na cadeira de rodas, obtendo um tempo de execução de 26 ms, para controle de quatro posições (para a frente, direita, esquerda e parar). Além disso, foi desenvolvido um outro controlador de lógica difusa, com tempo de execução de 24 ms, e que opera a cadeira de rodas em cinco direções (incluindo movimento para trás), com o usuário sentado na cadeira de rodas.Fundação Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Texthttp://repositorio.ufes.br/handle/10/16704porUniversidade Federal do Espírito SantoMestrado em Engenharia ElétricaPrograma de Pós-Graduação em Engenharia ElétricaUFESBRCentro Tecnológicosubject.br-rjbnEngenharia ElétricaFibra óptica de polímeroSensores de pressãoMonitoramento de posturaControle da cadeira de rodas por movimentos de cabeçaControle da cadeira por movimentos do pescoçoPosture Monitoring and Wheelchair Control Using Optical Fiber Pressure Sensorstitle.alternativeinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)instname:Universidade Federal do Espírito Santo (UFES)instacron:UFESORIGINALfinal_version_masterAXGC.pdfapplication/pdf10548694http://repositorio.ufes.br/bitstreams/a8806282-04f4-46e0-b252-00457da3e0ad/download9c54ddd4d656d48fb659d979078d16c2MD5110/167042024-07-25 09:19:35.876oai:repositorio.ufes.br:10/16704http://repositorio.ufes.brRepositório InstitucionalPUBhttp://repositorio.ufes.br/oai/requestopendoar:21082024-10-15T17:53:48.418876Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)false |
dc.title.none.fl_str_mv |
Posture Monitoring and Wheelchair Control Using Optical Fiber Pressure Sensors |
dc.title.alternative.none.fl_str_mv |
title.alternative |
title |
Posture Monitoring and Wheelchair Control Using Optical Fiber Pressure Sensors |
spellingShingle |
Posture Monitoring and Wheelchair Control Using Optical Fiber Pressure Sensors Gonzalez-Cely, Aura Ximena Engenharia Elétrica Fibra óptica de polímero Sensores de pressão Monitoramento de postura Controle da cadeira de rodas por movimentos de cabeça Controle da cadeira por movimentos do pescoço subject.br-rjbn |
title_short |
Posture Monitoring and Wheelchair Control Using Optical Fiber Pressure Sensors |
title_full |
Posture Monitoring and Wheelchair Control Using Optical Fiber Pressure Sensors |
title_fullStr |
Posture Monitoring and Wheelchair Control Using Optical Fiber Pressure Sensors |
title_full_unstemmed |
Posture Monitoring and Wheelchair Control Using Optical Fiber Pressure Sensors |
title_sort |
Posture Monitoring and Wheelchair Control Using Optical Fiber Pressure Sensors |
author |
Gonzalez-Cely, Aura Ximena |
author_facet |
Gonzalez-Cely, Aura Ximena |
author_role |
author |
dc.contributor.authorID.none.fl_str_mv |
https://orcid.org/0000000193040834 |
dc.contributor.authorLattes.none.fl_str_mv |
http://lattes.cnpq.br/2115528029027761 |
dc.contributor.advisor1.fl_str_mv |
Bastos Filho, Teodiano Freire |
dc.contributor.advisor1ID.fl_str_mv |
https://orcid.org/0000000211852773 |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/3761585497791105 |
dc.contributor.author.fl_str_mv |
Gonzalez-Cely, Aura Ximena |
dc.contributor.referee1.fl_str_mv |
Naves, Eduardo Lázaro Martins |
dc.contributor.referee1ID.fl_str_mv |
https://orcid.org/0000-0003-4175-723X |
dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/5450557733379720 |
dc.contributor.referee2.fl_str_mv |
Díaz, Camilo Arturo Rodríguez |
dc.contributor.referee2ID.fl_str_mv |
https://orcid.org/0000000196575076 |
dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br/2410092083336272 |
dc.contributor.referee3.fl_str_mv |
Mello, Ricardo Carminati de |
dc.contributor.referee3ID.fl_str_mv |
https://orcid.org/0000000304204273 |
dc.contributor.referee3Lattes.fl_str_mv |
http://lattes.cnpq.br/1569638571582691 |
contributor_str_mv |
Bastos Filho, Teodiano Freire Naves, Eduardo Lázaro Martins Díaz, Camilo Arturo Rodríguez Mello, Ricardo Carminati de |
dc.subject.cnpq.fl_str_mv |
Engenharia Elétrica |
topic |
Engenharia Elétrica Fibra óptica de polímero Sensores de pressão Monitoramento de postura Controle da cadeira de rodas por movimentos de cabeça Controle da cadeira por movimentos do pescoço subject.br-rjbn |
dc.subject.por.fl_str_mv |
Fibra óptica de polímero Sensores de pressão Monitoramento de postura Controle da cadeira de rodas por movimentos de cabeça Controle da cadeira por movimentos do pescoço |
dc.subject.br-rjbn.none.fl_str_mv |
subject.br-rjbn |
description |
A posture monitoring system and wheelchair control based on Polymer Optical Fiber (POF) pressure sensors was developed and installed on an electric-powered wheelchair and a neck pillow. The static characteristics of the POF-based pressure sensor are a response time of 33 µs, a mean linearity of 99.11%, a mean resolution of 5.95 mV, and a sensitivity of 3.9 mV/kg. A characterization per sensor, line and matrix of sensors resulted in a linear response, but with variations in the offset of the sensor because of the fiber delays returning to its original state. Moreover, a posture monitoring system was developed both offline and online using Machine Learning techniques. The offline stage used a Butterworth low-pass filter and a Common Average Reference filter in the pre-processing stage. The best result was obtained with the k-Nearest Neighbors (kNN) algorithm, with an accuracy of 99.16% with one-person data. After that, ten healthy people participated in the dataset construction, obtaining a classifier’s accuracy of 98.49% using the Extra Tree Classifier algorithm with an execution time of 2 s. The online classification used a kNN model obtaining an accuracy of 96.87 % with a mean prediction time of 117 ms. Moreover, neck control was implemented in offline and online stages. A features comparison was conducted in the offline stage, and the best accuracy was 85.50% with a Decision Tree algorithm. In the online stage, a Direct Current filter was implemented due to the natural response of the POF. A fuzzy logic controller was developed and validated, obtaining an execution time of 26 ms, moving in four directions (forward, right, left, and stop) when the user was out of the wheelchair. In addition, a head fuzzy controller using a motion capture system was implemented with an execution time of 24 ms moving in five directions including backward. The user was sitting in a wheelchair and the validation of the controller was made in a laboratory room. Future works will be focused on the improvement of the sensors, the inclusion of an obstacle avoidance system, and the neck controller enhancement. |
publishDate |
2023 |
dc.date.issued.fl_str_mv |
2023-03-02 |
dc.date.accessioned.fl_str_mv |
2024-05-30T01:41:21Z |
dc.date.available.fl_str_mv |
2024-05-30T01:41:21Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositorio.ufes.br/handle/10/16704 |
url |
http://repositorio.ufes.br/handle/10/16704 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
Text |
dc.publisher.none.fl_str_mv |
Universidade Federal do Espírito Santo Mestrado em Engenharia Elétrica |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Engenharia Elétrica |
dc.publisher.initials.fl_str_mv |
UFES |
dc.publisher.country.fl_str_mv |
BR |
dc.publisher.department.fl_str_mv |
Centro Tecnológico |
publisher.none.fl_str_mv |
Universidade Federal do Espírito Santo Mestrado em Engenharia Elétrica |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) instname:Universidade Federal do Espírito Santo (UFES) instacron:UFES |
instname_str |
Universidade Federal do Espírito Santo (UFES) |
instacron_str |
UFES |
institution |
UFES |
reponame_str |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
collection |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
bitstream.url.fl_str_mv |
http://repositorio.ufes.br/bitstreams/a8806282-04f4-46e0-b252-00457da3e0ad/download |
bitstream.checksum.fl_str_mv |
9c54ddd4d656d48fb659d979078d16c2 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES) |
repository.mail.fl_str_mv |
|
_version_ |
1813022516779679744 |