Image-based mapping and localization using VG-RAM weightless neural networks
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
Texto Completo: | http://repositorio.ufes.br/handle/10/4269 |
Resumo: | Mapping and localization are fundamental problems in autonomous robotics. Autonomous robots need to know where they are in their operational area to navigate through it and to perform activities of interest. In this work, we present an image-based mapping and localization system that employs Virtual Generalizing Random Access Memory Weightless Neural Networks (VGRAM WNN) for localizing an autonomous car. In our system, a VG-RAM WNN learns world positions associated with images and three-dimensional landmarks captured along a trajectory, in order to build a map of the environment. During the localization, the system uses its previous knowledge and uses an Extended Kalman Filter (EKF) to integrate sensor data over time through consecutive steps of state prediction and correction. The state prediction step is computed by means of our robot’s motion model, which uses velocity and steering angle information computed from images using visual odometry. The state correction step is performed by integrating the VG-RAM WNN learned world positions in combination to the matching of landmarks previously stored in the robot’s map. Our system efficiently solves the (i) mapping, (ii) global localization and (iii) position tracking problems using only camera images. We performed experiments with our system using real-world datasets, which were systematically acquired during laps around the Universidade Federal do Espírito Santo (UFES) main campus (a 3.57 km long circuit). Our experimental results show that the system is able to learn large maps (several kilometres in length) of real world environments and perform global and position tracking localization with mean pose precision of about 0.2m compared to the Monte Carlo Localization (MCL) approach employed in our autonomous vehicle. |
id |
UFES_978a17c6c85dbadb0bd830f7a199bbbd |
---|---|
oai_identifier_str |
oai:repositorio.ufes.br:10/4269 |
network_acronym_str |
UFES |
network_name_str |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
repository_id_str |
2108 |
spelling |
Santos, Thiago Oliveira dosSouza, Alberto Ferreira deLyrio Júnior, Lauro JoséVellasco, Marley Maria Bernardes RebuzziGonçalves, Claudine Santos Badue2016-08-29T15:33:19Z2016-07-112016-08-29T15:33:19Z2014-08-25Mapping and localization are fundamental problems in autonomous robotics. Autonomous robots need to know where they are in their operational area to navigate through it and to perform activities of interest. In this work, we present an image-based mapping and localization system that employs Virtual Generalizing Random Access Memory Weightless Neural Networks (VGRAM WNN) for localizing an autonomous car. In our system, a VG-RAM WNN learns world positions associated with images and three-dimensional landmarks captured along a trajectory, in order to build a map of the environment. During the localization, the system uses its previous knowledge and uses an Extended Kalman Filter (EKF) to integrate sensor data over time through consecutive steps of state prediction and correction. The state prediction step is computed by means of our robot’s motion model, which uses velocity and steering angle information computed from images using visual odometry. The state correction step is performed by integrating the VG-RAM WNN learned world positions in combination to the matching of landmarks previously stored in the robot’s map. Our system efficiently solves the (i) mapping, (ii) global localization and (iii) position tracking problems using only camera images. We performed experiments with our system using real-world datasets, which were systematically acquired during laps around the Universidade Federal do Espírito Santo (UFES) main campus (a 3.57 km long circuit). Our experimental results show that the system is able to learn large maps (several kilometres in length) of real world environments and perform global and position tracking localization with mean pose precision of about 0.2m compared to the Monte Carlo Localization (MCL) approach employed in our autonomous vehicle.Localização e Mapeamento são problemas fundamentais da robótica autônoma. Robôs autônomos necessitam saber onde se encontram em sua área de operação para navegar pelo ambiente e realizar suas atividades de interesse. Neste trabalho, apresentamos um sistema para mapeamento e localização baseado em imagens que emprega Redes Neurais Sem Peso do Tipo VG-RAM (RNSP VG-RAM) para um carro autônomo. No nosso sistema, uma RNSP VG-RAM aprende posições globais associadas à imagens e marcos tridimensionais capturados ao longo de uma trajetória, e constrói um mapa baseado nessas informações. Durante a localização, o sistema usa um Filtro Estendido de Kalman para integrar dados de sensores e do mapa ao longo do tempo, através de passos consecutivos de predição e correção do estado do sistema. O passo de predição é calculado por meio do modelo de movimento do nosso robô, que utiliza informações de velocidade e ângulo do volante, calculados a partir de imagens utilizando-se odometria visual. O passo de correção é realizado através da integração das posições globais que a RNSP VG-RAM com a correspondência dos marcos tridimensional previamente armazenados no mapa do robô. Realizamos experimentos com o nosso sistema usando conjuntos de dados do mundo real. Estes conjuntos de dados consistem em dados provenientes de vários sensores de um carro autônomo, que foram sistematicamente adquiridos durante voltas ao redor do campus principal da UFES (um circuito de 3,57 km). Nossos resultados experimentais mostram que nosso sistema é capaz de aprender grandes mapas (vários quilômetros de comprimento) e realizar a localização global e rastreamento de posição de carros autônomos, com uma precisão de 0,2 metros quando comparado à abordagem de Localização de Monte Carlo utilizado no nosso veículo autônomo.TextLYRIO JÚNIOR, Lauro José. Image-based mapping and localization using VG-RAM weightless neural networks. 2014. 80 f. Dissertação (Mestrado em Informática) - Universidade Federal do Espírito Santo, Centro Tecnológico, Vitória, 2014.http://repositorio.ufes.br/handle/10/4269engUniversidade Federal do Espírito SantoMestrado em InformáticaPrograma de Pós-Graduação em InformáticaUFESBRCentro TecnológicoRedes neurais (Computação)RobóticaVisão por computadorMapeamento digitalAprendizado do computadorCiência da Computação004Image-based mapping and localization using VG-RAM weightless neural networksMapeamento e localização baseados em imagem utilizando redes neurais sem peso do tipo VG-RAMinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)instname:Universidade Federal do Espírito Santo (UFES)instacron:UFESORIGINALDissertation_v19_revisada.pdfapplication/pdf2779348http://repositorio.ufes.br/bitstreams/91b0c842-203a-411f-9356-e60070b79edb/download03cd204a381a08129d46ee5fef88917cMD5110/42692024-07-17 17:01:08.607oai:repositorio.ufes.br:10/4269http://repositorio.ufes.brRepositório InstitucionalPUBhttp://repositorio.ufes.br/oai/requestopendoar:21082024-10-15T17:54:32.397036Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)false |
dc.title.none.fl_str_mv |
Image-based mapping and localization using VG-RAM weightless neural networks |
dc.title.alternative.none.fl_str_mv |
Mapeamento e localização baseados em imagem utilizando redes neurais sem peso do tipo VG-RAM |
title |
Image-based mapping and localization using VG-RAM weightless neural networks |
spellingShingle |
Image-based mapping and localization using VG-RAM weightless neural networks Lyrio Júnior, Lauro José Ciência da Computação Redes neurais (Computação) Robótica Visão por computador Mapeamento digital Aprendizado do computador 004 |
title_short |
Image-based mapping and localization using VG-RAM weightless neural networks |
title_full |
Image-based mapping and localization using VG-RAM weightless neural networks |
title_fullStr |
Image-based mapping and localization using VG-RAM weightless neural networks |
title_full_unstemmed |
Image-based mapping and localization using VG-RAM weightless neural networks |
title_sort |
Image-based mapping and localization using VG-RAM weightless neural networks |
author |
Lyrio Júnior, Lauro José |
author_facet |
Lyrio Júnior, Lauro José |
author_role |
author |
dc.contributor.advisor-co1.fl_str_mv |
Santos, Thiago Oliveira dos |
dc.contributor.advisor1.fl_str_mv |
Souza, Alberto Ferreira de |
dc.contributor.author.fl_str_mv |
Lyrio Júnior, Lauro José |
dc.contributor.referee1.fl_str_mv |
Vellasco, Marley Maria Bernardes Rebuzzi |
dc.contributor.referee2.fl_str_mv |
Gonçalves, Claudine Santos Badue |
contributor_str_mv |
Santos, Thiago Oliveira dos Souza, Alberto Ferreira de Vellasco, Marley Maria Bernardes Rebuzzi Gonçalves, Claudine Santos Badue |
dc.subject.cnpq.fl_str_mv |
Ciência da Computação |
topic |
Ciência da Computação Redes neurais (Computação) Robótica Visão por computador Mapeamento digital Aprendizado do computador 004 |
dc.subject.br-rjbn.none.fl_str_mv |
Redes neurais (Computação) Robótica Visão por computador Mapeamento digital Aprendizado do computador |
dc.subject.udc.none.fl_str_mv |
004 |
description |
Mapping and localization are fundamental problems in autonomous robotics. Autonomous robots need to know where they are in their operational area to navigate through it and to perform activities of interest. In this work, we present an image-based mapping and localization system that employs Virtual Generalizing Random Access Memory Weightless Neural Networks (VGRAM WNN) for localizing an autonomous car. In our system, a VG-RAM WNN learns world positions associated with images and three-dimensional landmarks captured along a trajectory, in order to build a map of the environment. During the localization, the system uses its previous knowledge and uses an Extended Kalman Filter (EKF) to integrate sensor data over time through consecutive steps of state prediction and correction. The state prediction step is computed by means of our robot’s motion model, which uses velocity and steering angle information computed from images using visual odometry. The state correction step is performed by integrating the VG-RAM WNN learned world positions in combination to the matching of landmarks previously stored in the robot’s map. Our system efficiently solves the (i) mapping, (ii) global localization and (iii) position tracking problems using only camera images. We performed experiments with our system using real-world datasets, which were systematically acquired during laps around the Universidade Federal do Espírito Santo (UFES) main campus (a 3.57 km long circuit). Our experimental results show that the system is able to learn large maps (several kilometres in length) of real world environments and perform global and position tracking localization with mean pose precision of about 0.2m compared to the Monte Carlo Localization (MCL) approach employed in our autonomous vehicle. |
publishDate |
2014 |
dc.date.issued.fl_str_mv |
2014-08-25 |
dc.date.accessioned.fl_str_mv |
2016-08-29T15:33:19Z |
dc.date.available.fl_str_mv |
2016-07-11 2016-08-29T15:33:19Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
LYRIO JÚNIOR, Lauro José. Image-based mapping and localization using VG-RAM weightless neural networks. 2014. 80 f. Dissertação (Mestrado em Informática) - Universidade Federal do Espírito Santo, Centro Tecnológico, Vitória, 2014. |
dc.identifier.uri.fl_str_mv |
http://repositorio.ufes.br/handle/10/4269 |
identifier_str_mv |
LYRIO JÚNIOR, Lauro José. Image-based mapping and localization using VG-RAM weightless neural networks. 2014. 80 f. Dissertação (Mestrado em Informática) - Universidade Federal do Espírito Santo, Centro Tecnológico, Vitória, 2014. |
url |
http://repositorio.ufes.br/handle/10/4269 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
Text |
dc.publisher.none.fl_str_mv |
Universidade Federal do Espírito Santo Mestrado em Informática |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Informática |
dc.publisher.initials.fl_str_mv |
UFES |
dc.publisher.country.fl_str_mv |
BR |
dc.publisher.department.fl_str_mv |
Centro Tecnológico |
publisher.none.fl_str_mv |
Universidade Federal do Espírito Santo Mestrado em Informática |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) instname:Universidade Federal do Espírito Santo (UFES) instacron:UFES |
instname_str |
Universidade Federal do Espírito Santo (UFES) |
instacron_str |
UFES |
institution |
UFES |
reponame_str |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
collection |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
bitstream.url.fl_str_mv |
http://repositorio.ufes.br/bitstreams/91b0c842-203a-411f-9356-e60070b79edb/download |
bitstream.checksum.fl_str_mv |
03cd204a381a08129d46ee5fef88917c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES) |
repository.mail.fl_str_mv |
|
_version_ |
1813022521890439168 |