Image-based mapping and localization using VG-RAM weightless neural networks

Detalhes bibliográficos
Autor(a) principal: Lyrio Júnior, Lauro José
Data de Publicação: 2014
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
Texto Completo: http://repositorio.ufes.br/handle/10/4269
Resumo: Mapping and localization are fundamental problems in autonomous robotics. Autonomous robots need to know where they are in their operational area to navigate through it and to perform activities of interest. In this work, we present an image-based mapping and localization system that employs Virtual Generalizing Random Access Memory Weightless Neural Networks (VGRAM WNN) for localizing an autonomous car. In our system, a VG-RAM WNN learns world positions associated with images and three-dimensional landmarks captured along a trajectory, in order to build a map of the environment. During the localization, the system uses its previous knowledge and uses an Extended Kalman Filter (EKF) to integrate sensor data over time through consecutive steps of state prediction and correction. The state prediction step is computed by means of our robot’s motion model, which uses velocity and steering angle information computed from images using visual odometry. The state correction step is performed by integrating the VG-RAM WNN learned world positions in combination to the matching of landmarks previously stored in the robot’s map. Our system efficiently solves the (i) mapping, (ii) global localization and (iii) position tracking problems using only camera images. We performed experiments with our system using real-world datasets, which were systematically acquired during laps around the Universidade Federal do Espírito Santo (UFES) main campus (a 3.57 km long circuit). Our experimental results show that the system is able to learn large maps (several kilometres in length) of real world environments and perform global and position tracking localization with mean pose precision of about 0.2m compared to the Monte Carlo Localization (MCL) approach employed in our autonomous vehicle.
id UFES_978a17c6c85dbadb0bd830f7a199bbbd
oai_identifier_str oai:repositorio.ufes.br:10/4269
network_acronym_str UFES
network_name_str Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
repository_id_str 2108
spelling Santos, Thiago Oliveira dosSouza, Alberto Ferreira deLyrio Júnior, Lauro JoséVellasco, Marley Maria Bernardes RebuzziGonçalves, Claudine Santos Badue2016-08-29T15:33:19Z2016-07-112016-08-29T15:33:19Z2014-08-25Mapping and localization are fundamental problems in autonomous robotics. Autonomous robots need to know where they are in their operational area to navigate through it and to perform activities of interest. In this work, we present an image-based mapping and localization system that employs Virtual Generalizing Random Access Memory Weightless Neural Networks (VGRAM WNN) for localizing an autonomous car. In our system, a VG-RAM WNN learns world positions associated with images and three-dimensional landmarks captured along a trajectory, in order to build a map of the environment. During the localization, the system uses its previous knowledge and uses an Extended Kalman Filter (EKF) to integrate sensor data over time through consecutive steps of state prediction and correction. The state prediction step is computed by means of our robot’s motion model, which uses velocity and steering angle information computed from images using visual odometry. The state correction step is performed by integrating the VG-RAM WNN learned world positions in combination to the matching of landmarks previously stored in the robot’s map. Our system efficiently solves the (i) mapping, (ii) global localization and (iii) position tracking problems using only camera images. We performed experiments with our system using real-world datasets, which were systematically acquired during laps around the Universidade Federal do Espírito Santo (UFES) main campus (a 3.57 km long circuit). Our experimental results show that the system is able to learn large maps (several kilometres in length) of real world environments and perform global and position tracking localization with mean pose precision of about 0.2m compared to the Monte Carlo Localization (MCL) approach employed in our autonomous vehicle.Localização e Mapeamento são problemas fundamentais da robótica autônoma. Robôs autônomos necessitam saber onde se encontram em sua área de operação para navegar pelo ambiente e realizar suas atividades de interesse. Neste trabalho, apresentamos um sistema para mapeamento e localização baseado em imagens que emprega Redes Neurais Sem Peso do Tipo VG-RAM (RNSP VG-RAM) para um carro autônomo. No nosso sistema, uma RNSP VG-RAM aprende posições globais associadas à imagens e marcos tridimensionais capturados ao longo de uma trajetória, e constrói um mapa baseado nessas informações. Durante a localização, o sistema usa um Filtro Estendido de Kalman para integrar dados de sensores e do mapa ao longo do tempo, através de passos consecutivos de predição e correção do estado do sistema. O passo de predição é calculado por meio do modelo de movimento do nosso robô, que utiliza informações de velocidade e ângulo do volante, calculados a partir de imagens utilizando-se odometria visual. O passo de correção é realizado através da integração das posições globais que a RNSP VG-RAM com a correspondência dos marcos tridimensional previamente armazenados no mapa do robô. Realizamos experimentos com o nosso sistema usando conjuntos de dados do mundo real. Estes conjuntos de dados consistem em dados provenientes de vários sensores de um carro autônomo, que foram sistematicamente adquiridos durante voltas ao redor do campus principal da UFES (um circuito de 3,57 km). Nossos resultados experimentais mostram que nosso sistema é capaz de aprender grandes mapas (vários quilômetros de comprimento) e realizar a localização global e rastreamento de posição de carros autônomos, com uma precisão de 0,2 metros quando comparado à abordagem de Localização de Monte Carlo utilizado no nosso veículo autônomo.TextLYRIO JÚNIOR, Lauro José. Image-based mapping and localization using VG-RAM weightless neural networks. 2014. 80 f. Dissertação (Mestrado em Informática) - Universidade Federal do Espírito Santo, Centro Tecnológico, Vitória, 2014.http://repositorio.ufes.br/handle/10/4269engUniversidade Federal do Espírito SantoMestrado em InformáticaPrograma de Pós-Graduação em InformáticaUFESBRCentro TecnológicoRedes neurais (Computação)RobóticaVisão por computadorMapeamento digitalAprendizado do computadorCiência da Computação004Image-based mapping and localization using VG-RAM weightless neural networksMapeamento e localização baseados em imagem utilizando redes neurais sem peso do tipo VG-RAMinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)instname:Universidade Federal do Espírito Santo (UFES)instacron:UFESORIGINALDissertation_v19_revisada.pdfapplication/pdf2779348http://repositorio.ufes.br/bitstreams/91b0c842-203a-411f-9356-e60070b79edb/download03cd204a381a08129d46ee5fef88917cMD5110/42692024-07-17 17:01:08.607oai:repositorio.ufes.br:10/4269http://repositorio.ufes.brRepositório InstitucionalPUBhttp://repositorio.ufes.br/oai/requestopendoar:21082024-10-15T17:54:32.397036Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)false
dc.title.none.fl_str_mv Image-based mapping and localization using VG-RAM weightless neural networks
dc.title.alternative.none.fl_str_mv Mapeamento e localização baseados em imagem utilizando redes neurais sem peso do tipo VG-RAM
title Image-based mapping and localization using VG-RAM weightless neural networks
spellingShingle Image-based mapping and localization using VG-RAM weightless neural networks
Lyrio Júnior, Lauro José
Ciência da Computação
Redes neurais (Computação)
Robótica
Visão por computador
Mapeamento digital
Aprendizado do computador
004
title_short Image-based mapping and localization using VG-RAM weightless neural networks
title_full Image-based mapping and localization using VG-RAM weightless neural networks
title_fullStr Image-based mapping and localization using VG-RAM weightless neural networks
title_full_unstemmed Image-based mapping and localization using VG-RAM weightless neural networks
title_sort Image-based mapping and localization using VG-RAM weightless neural networks
author Lyrio Júnior, Lauro José
author_facet Lyrio Júnior, Lauro José
author_role author
dc.contributor.advisor-co1.fl_str_mv Santos, Thiago Oliveira dos
dc.contributor.advisor1.fl_str_mv Souza, Alberto Ferreira de
dc.contributor.author.fl_str_mv Lyrio Júnior, Lauro José
dc.contributor.referee1.fl_str_mv Vellasco, Marley Maria Bernardes Rebuzzi
dc.contributor.referee2.fl_str_mv Gonçalves, Claudine Santos Badue
contributor_str_mv Santos, Thiago Oliveira dos
Souza, Alberto Ferreira de
Vellasco, Marley Maria Bernardes Rebuzzi
Gonçalves, Claudine Santos Badue
dc.subject.cnpq.fl_str_mv Ciência da Computação
topic Ciência da Computação
Redes neurais (Computação)
Robótica
Visão por computador
Mapeamento digital
Aprendizado do computador
004
dc.subject.br-rjbn.none.fl_str_mv Redes neurais (Computação)
Robótica
Visão por computador
Mapeamento digital
Aprendizado do computador
dc.subject.udc.none.fl_str_mv 004
description Mapping and localization are fundamental problems in autonomous robotics. Autonomous robots need to know where they are in their operational area to navigate through it and to perform activities of interest. In this work, we present an image-based mapping and localization system that employs Virtual Generalizing Random Access Memory Weightless Neural Networks (VGRAM WNN) for localizing an autonomous car. In our system, a VG-RAM WNN learns world positions associated with images and three-dimensional landmarks captured along a trajectory, in order to build a map of the environment. During the localization, the system uses its previous knowledge and uses an Extended Kalman Filter (EKF) to integrate sensor data over time through consecutive steps of state prediction and correction. The state prediction step is computed by means of our robot’s motion model, which uses velocity and steering angle information computed from images using visual odometry. The state correction step is performed by integrating the VG-RAM WNN learned world positions in combination to the matching of landmarks previously stored in the robot’s map. Our system efficiently solves the (i) mapping, (ii) global localization and (iii) position tracking problems using only camera images. We performed experiments with our system using real-world datasets, which were systematically acquired during laps around the Universidade Federal do Espírito Santo (UFES) main campus (a 3.57 km long circuit). Our experimental results show that the system is able to learn large maps (several kilometres in length) of real world environments and perform global and position tracking localization with mean pose precision of about 0.2m compared to the Monte Carlo Localization (MCL) approach employed in our autonomous vehicle.
publishDate 2014
dc.date.issued.fl_str_mv 2014-08-25
dc.date.accessioned.fl_str_mv 2016-08-29T15:33:19Z
dc.date.available.fl_str_mv 2016-07-11
2016-08-29T15:33:19Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv LYRIO JÚNIOR, Lauro José. Image-based mapping and localization using VG-RAM weightless neural networks. 2014. 80 f. Dissertação (Mestrado em Informática) - Universidade Federal do Espírito Santo, Centro Tecnológico, Vitória, 2014.
dc.identifier.uri.fl_str_mv http://repositorio.ufes.br/handle/10/4269
identifier_str_mv LYRIO JÚNIOR, Lauro José. Image-based mapping and localization using VG-RAM weightless neural networks. 2014. 80 f. Dissertação (Mestrado em Informática) - Universidade Federal do Espírito Santo, Centro Tecnológico, Vitória, 2014.
url http://repositorio.ufes.br/handle/10/4269
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv Text
dc.publisher.none.fl_str_mv Universidade Federal do Espírito Santo
Mestrado em Informática
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Informática
dc.publisher.initials.fl_str_mv UFES
dc.publisher.country.fl_str_mv BR
dc.publisher.department.fl_str_mv Centro Tecnológico
publisher.none.fl_str_mv Universidade Federal do Espírito Santo
Mestrado em Informática
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
instname:Universidade Federal do Espírito Santo (UFES)
instacron:UFES
instname_str Universidade Federal do Espírito Santo (UFES)
instacron_str UFES
institution UFES
reponame_str Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
collection Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
bitstream.url.fl_str_mv http://repositorio.ufes.br/bitstreams/91b0c842-203a-411f-9356-e60070b79edb/download
bitstream.checksum.fl_str_mv 03cd204a381a08129d46ee5fef88917c
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)
repository.mail.fl_str_mv
_version_ 1813022521890439168