Adaptive x-ray tomography image reconstruction
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
Texto Completo: | http://repositorio.ufes.br/handle/10/13357 |
Resumo: | In X-ray tomography image reconstruction, one of the most successful approaches involves a statistical modeling with l2 norm function for fidelity regularized by a functional with lp norm, 1 < p < 2, with p ∈ R. Among them stands out, for its results and computational performance, a technique that reconstructs an image by alternating minimization for (i) solving the l2 norm fidelity term by Simultaneous Algebraic Reconstruction Technique (SART) and (ii) constraining the regularization term, defined by a Discrete Gradient Transform (DGT) sparse transformation, using Total Variation (TV) minimization. This work proposes an improvement to the reconstruction process by adding a Bilateral Edge preserving (BEP) regularization term to the objective function, resulting in a three-step method. BEP is a noise reduction framework and has the purpose of adaptively eliminating noise in the initial phase of reconstruction process. BEP improves optimization of the f idelity term and, as a consequence, improves the result of DGT minimization by total variation. Regular dosage experiments shown favorable results compared to classical methods, such as Filtred Backprojection (FBP), and more modern ones, such as l2 norm optimization by using SART, and the l2 norm SART solution regularized by l1 norm TV optimization of DGT (SART+DGT), especially with the Structural Similarity Index Measurement (SSIM) metric. Although not so prominent in the case of regular dosing reconstruction, Peak Signal-to-noise Ratio (PSNR) results are consistent with those of SSIM. For low dosage, the quality of the reconstruction worsens for all methods, but is markedly lower for the FBP and SART methods. In this context of limited number of projections (low dosage), the reconstructions with the method here proposed presents better defined edges, in addition to better contrast and less artifacts in surfaces of regular intensity (low intensity variation). These results are generally obtained with a smaller number of steps compared to the other iterative methods implemented in this Thesis. However, this behavior (of the proposed method) depends on the parameterization of the lp norm, 1 ≤ p ≤ 2, used in the BEP stage. It is experimentally shown that by varying the norm during the reconstruction process it is possible to keep the proposed method stable over a sufficiently large number of iteractions. It is also graphically shown that the method converge, meaning that the SSIM and PSNR metrics can be continuously improved by a sufficiently large number of iteractions. For reconstructions with a limited number of projections (low-dose reconstruction), the proposed method can achieve higher PSNR and SSIM results because it can better control the noise in the initial processing phase. |
id |
UFES_9abba9cb491986aa044af06366a26d53 |
---|---|
oai_identifier_str |
oai:repositorio.ufes.br:10/13357 |
network_acronym_str |
UFES |
network_name_str |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
repository_id_str |
2108 |
spelling |
Salles, Evandro Ottoni Teatinihttps://orcid.org/0000000282873045http://lattes.cnpq.br/5893731382102675Wirtti, Tiago Tadeuhttps://orcid.org/ 0000-0003-0731-6326 http://lattes.cnpq.br/3414259707581590Filho, Mario Sarcinellihttps://orcid.org/0000000276968996http://lattes.cnpq.br/3459331011913021Andreao, Rodrigo Varejaohttps://orcid.org/0000000268005700http://lattes.cnpq.br/5589662366089944Pinto, Luiz Albertohttps://orcid.org/http://lattes.cnpq.br/Kim, Hae Yong2024-05-29T22:11:01Z2024-05-29T22:11:01Z2019-08-08In X-ray tomography image reconstruction, one of the most successful approaches involves a statistical modeling with l2 norm function for fidelity regularized by a functional with lp norm, 1 < p < 2, with p ∈ R. Among them stands out, for its results and computational performance, a technique that reconstructs an image by alternating minimization for (i) solving the l2 norm fidelity term by Simultaneous Algebraic Reconstruction Technique (SART) and (ii) constraining the regularization term, defined by a Discrete Gradient Transform (DGT) sparse transformation, using Total Variation (TV) minimization. This work proposes an improvement to the reconstruction process by adding a Bilateral Edge preserving (BEP) regularization term to the objective function, resulting in a three-step method. BEP is a noise reduction framework and has the purpose of adaptively eliminating noise in the initial phase of reconstruction process. BEP improves optimization of the f idelity term and, as a consequence, improves the result of DGT minimization by total variation. Regular dosage experiments shown favorable results compared to classical methods, such as Filtred Backprojection (FBP), and more modern ones, such as l2 norm optimization by using SART, and the l2 norm SART solution regularized by l1 norm TV optimization of DGT (SART+DGT), especially with the Structural Similarity Index Measurement (SSIM) metric. Although not so prominent in the case of regular dosing reconstruction, Peak Signal-to-noise Ratio (PSNR) results are consistent with those of SSIM. For low dosage, the quality of the reconstruction worsens for all methods, but is markedly lower for the FBP and SART methods. In this context of limited number of projections (low dosage), the reconstructions with the method here proposed presents better defined edges, in addition to better contrast and less artifacts in surfaces of regular intensity (low intensity variation). These results are generally obtained with a smaller number of steps compared to the other iterative methods implemented in this Thesis. However, this behavior (of the proposed method) depends on the parameterization of the lp norm, 1 ≤ p ≤ 2, used in the BEP stage. It is experimentally shown that by varying the norm during the reconstruction process it is possible to keep the proposed method stable over a sufficiently large number of iteractions. It is also graphically shown that the method converge, meaning that the SSIM and PSNR metrics can be continuously improved by a sufficiently large number of iteractions. For reconstructions with a limited number of projections (low-dose reconstruction), the proposed method can achieve higher PSNR and SSIM results because it can better control the noise in the initial processing phase.Em reconstrução de imagem de tomografica de raios-X, uma das abordagens mais bem sucedidas envolve a modelagem estatística de uma função fidelidade de norma l2 combinada com algum tipo de regularização de norma lp, 1 < p < 2, onde p ∈ R. Entre elas, se destaca por seus resultados e desempenho computacional uma técnica que envolve minimização alternada entre (i) a solução da função fidelidade de norma l2 pela técnica de reconstrução algébrica simultânea (SART, simultaneous algebraic reconstruction technique) e (ii) a solução de um termo regularizador que usa transformação gradiente discreta (DGT, discrete gradient transform) minimizada por variação total (TV, total variation). O presente trabalho propõe a melhoria desse processo de reconstrução através da adição à função objetivo de um termo baseado em preservação bilateral de bordas (BEP, bilateral edge preservation), resultando em um método de três etapas. BEP é uma metodologia de redução de ruído e tem o propósito de eliminar de forma adaptativa o ruído na fase inicial do processo de reconstrução. Como consequência, a adição de BEP melhora a otimização do termo de fidelidade e o resultado da minimização da DGT por variação total. Experimentos com dosagem regular mostram resultados favoráveis em comparação com métodos clássicos, tais como Retroprojeção com Filtragem (Filtered Backprojection, ou FBP) e outros mais modernos, tais como solução por otimização de norma l2 por SART, especialmente para a métrica SSIM. Embora não sejam proemintes no caso de reconstrução com dosagem regular, os resultados com PSNR são coerentes com os do SSIM. Para baixa dosagem, a qualidade da rescontrução piora para todos os métodos, mas é notadamente inferior para FBP e SART. Neste contexto de número limitado de projeções (baixa dosagem), o método proposto apresenta reconstruções com bordas mais bem definidas, além de melhor constraste e menos artefatos em superfícies regulares (pouca variação de intensidade). Esses resultados são obtidos geralmente com um menor número de iterações em comparação com os demais métodos implementados nesta Tese. É experimentalmente mostrado que variando a norma no decorrer do processo de reconstrução é possível manter o método proposto estável ao longo de um número suficientemente grande de iterações. Para reconstruções com um número limitado de projeções (reconstrução de baixa dosagem), o método proposto pode alcançar resultados consideráveis em termos de PSNR e SSIM devido à possibilidade de controlar melhor o ruído na fase inicial do processo de reconstrução.Texthttp://repositorio.ufes.br/handle/10/13357porUniversidade Federal do Espírito SantoDoutorado em Engenharia ElétricaPrograma de Pós-Graduação em Engenharia ElétricaUFESBRCentro Tecnológicosubject.br-rjbnEngenharia ElétricaSignal processingBiomedical engineeringX-ray computed tomographyImage reconstructionOptimization techniques,Bilateral edge preservationProcessamento de sinalEngenharia biomédicaTomografia computadorizada de raios-XReconstrução de imagemTécnicas de otimizaçãoPreservação bilateral de bordasAdaptive x-ray tomography image reconstructiontitle.alternativeinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)instname:Universidade Federal do Espírito Santo (UFES)instacron:UFESORIGINALTiagoTadeuWirtti-2019-Tese.pdfapplication/pdf9835111http://repositorio.ufes.br/bitstreams/4aa1733a-bd01-4d05-9f8b-152bc45f6ad4/downloada6a05882269066ca00aafba597a0ac17MD5110/133572024-08-06 10:54:17.416oai:repositorio.ufes.br:10/13357http://repositorio.ufes.brRepositório InstitucionalPUBhttp://repositorio.ufes.br/oai/requestopendoar:21082024-10-15T17:59:23.964101Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)false |
dc.title.none.fl_str_mv |
Adaptive x-ray tomography image reconstruction |
dc.title.alternative.none.fl_str_mv |
title.alternative |
title |
Adaptive x-ray tomography image reconstruction |
spellingShingle |
Adaptive x-ray tomography image reconstruction Wirtti, Tiago Tadeu Engenharia Elétrica Signal processing Biomedical engineering X-ray computed tomography Image reconstruction Optimization techniques, Bilateral edge preservation Processamento de sinal Engenharia biomédica Tomografia computadorizada de raios-X Reconstrução de imagem Técnicas de otimização Preservação bilateral de bordas subject.br-rjbn |
title_short |
Adaptive x-ray tomography image reconstruction |
title_full |
Adaptive x-ray tomography image reconstruction |
title_fullStr |
Adaptive x-ray tomography image reconstruction |
title_full_unstemmed |
Adaptive x-ray tomography image reconstruction |
title_sort |
Adaptive x-ray tomography image reconstruction |
author |
Wirtti, Tiago Tadeu |
author_facet |
Wirtti, Tiago Tadeu |
author_role |
author |
dc.contributor.authorID.none.fl_str_mv |
https://orcid.org/ 0000-0003-0731-6326 |
dc.contributor.authorLattes.none.fl_str_mv |
http://lattes.cnpq.br/3414259707581590 |
dc.contributor.advisor1.fl_str_mv |
Salles, Evandro Ottoni Teatini |
dc.contributor.advisor1ID.fl_str_mv |
https://orcid.org/0000000282873045 |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/5893731382102675 |
dc.contributor.author.fl_str_mv |
Wirtti, Tiago Tadeu |
dc.contributor.referee1.fl_str_mv |
Filho, Mario Sarcinelli |
dc.contributor.referee1ID.fl_str_mv |
https://orcid.org/0000000276968996 |
dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/3459331011913021 |
dc.contributor.referee2.fl_str_mv |
Andreao, Rodrigo Varejao |
dc.contributor.referee2ID.fl_str_mv |
https://orcid.org/0000000268005700 |
dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br/5589662366089944 |
dc.contributor.referee3.fl_str_mv |
Pinto, Luiz Alberto |
dc.contributor.referee3ID.fl_str_mv |
https://orcid.org/ |
dc.contributor.referee3Lattes.fl_str_mv |
http://lattes.cnpq.br/ |
dc.contributor.referee4.fl_str_mv |
Kim, Hae Yong |
contributor_str_mv |
Salles, Evandro Ottoni Teatini Filho, Mario Sarcinelli Andreao, Rodrigo Varejao Pinto, Luiz Alberto Kim, Hae Yong |
dc.subject.cnpq.fl_str_mv |
Engenharia Elétrica |
topic |
Engenharia Elétrica Signal processing Biomedical engineering X-ray computed tomography Image reconstruction Optimization techniques, Bilateral edge preservation Processamento de sinal Engenharia biomédica Tomografia computadorizada de raios-X Reconstrução de imagem Técnicas de otimização Preservação bilateral de bordas subject.br-rjbn |
dc.subject.por.fl_str_mv |
Signal processing Biomedical engineering X-ray computed tomography Image reconstruction Optimization techniques, Bilateral edge preservation Processamento de sinal Engenharia biomédica Tomografia computadorizada de raios-X Reconstrução de imagem Técnicas de otimização Preservação bilateral de bordas |
dc.subject.br-rjbn.none.fl_str_mv |
subject.br-rjbn |
description |
In X-ray tomography image reconstruction, one of the most successful approaches involves a statistical modeling with l2 norm function for fidelity regularized by a functional with lp norm, 1 < p < 2, with p ∈ R. Among them stands out, for its results and computational performance, a technique that reconstructs an image by alternating minimization for (i) solving the l2 norm fidelity term by Simultaneous Algebraic Reconstruction Technique (SART) and (ii) constraining the regularization term, defined by a Discrete Gradient Transform (DGT) sparse transformation, using Total Variation (TV) minimization. This work proposes an improvement to the reconstruction process by adding a Bilateral Edge preserving (BEP) regularization term to the objective function, resulting in a three-step method. BEP is a noise reduction framework and has the purpose of adaptively eliminating noise in the initial phase of reconstruction process. BEP improves optimization of the f idelity term and, as a consequence, improves the result of DGT minimization by total variation. Regular dosage experiments shown favorable results compared to classical methods, such as Filtred Backprojection (FBP), and more modern ones, such as l2 norm optimization by using SART, and the l2 norm SART solution regularized by l1 norm TV optimization of DGT (SART+DGT), especially with the Structural Similarity Index Measurement (SSIM) metric. Although not so prominent in the case of regular dosing reconstruction, Peak Signal-to-noise Ratio (PSNR) results are consistent with those of SSIM. For low dosage, the quality of the reconstruction worsens for all methods, but is markedly lower for the FBP and SART methods. In this context of limited number of projections (low dosage), the reconstructions with the method here proposed presents better defined edges, in addition to better contrast and less artifacts in surfaces of regular intensity (low intensity variation). These results are generally obtained with a smaller number of steps compared to the other iterative methods implemented in this Thesis. However, this behavior (of the proposed method) depends on the parameterization of the lp norm, 1 ≤ p ≤ 2, used in the BEP stage. It is experimentally shown that by varying the norm during the reconstruction process it is possible to keep the proposed method stable over a sufficiently large number of iteractions. It is also graphically shown that the method converge, meaning that the SSIM and PSNR metrics can be continuously improved by a sufficiently large number of iteractions. For reconstructions with a limited number of projections (low-dose reconstruction), the proposed method can achieve higher PSNR and SSIM results because it can better control the noise in the initial processing phase. |
publishDate |
2019 |
dc.date.issued.fl_str_mv |
2019-08-08 |
dc.date.accessioned.fl_str_mv |
2024-05-29T22:11:01Z |
dc.date.available.fl_str_mv |
2024-05-29T22:11:01Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositorio.ufes.br/handle/10/13357 |
url |
http://repositorio.ufes.br/handle/10/13357 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
Text |
dc.publisher.none.fl_str_mv |
Universidade Federal do Espírito Santo Doutorado em Engenharia Elétrica |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Engenharia Elétrica |
dc.publisher.initials.fl_str_mv |
UFES |
dc.publisher.country.fl_str_mv |
BR |
dc.publisher.department.fl_str_mv |
Centro Tecnológico |
publisher.none.fl_str_mv |
Universidade Federal do Espírito Santo Doutorado em Engenharia Elétrica |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) instname:Universidade Federal do Espírito Santo (UFES) instacron:UFES |
instname_str |
Universidade Federal do Espírito Santo (UFES) |
instacron_str |
UFES |
institution |
UFES |
reponame_str |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
collection |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
bitstream.url.fl_str_mv |
http://repositorio.ufes.br/bitstreams/4aa1733a-bd01-4d05-9f8b-152bc45f6ad4/download |
bitstream.checksum.fl_str_mv |
a6a05882269066ca00aafba597a0ac17 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES) |
repository.mail.fl_str_mv |
|
_version_ |
1813022556078211072 |