A neural-based model predictive control to tackle steering delay of the IARA autonomous car

Detalhes bibliográficos
Autor(a) principal: Guidolini, Rânik
Data de Publicação: 2017
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
Texto Completo: http://repositorio.ufes.br/handle/10/9852
Resumo: In this work, we propose a Neural Based Model Predictive Control (N-MPC) approach to tackle delays in the steering plant of autonomous cars. We examined the N-MPC approach as an alternative for the implementation of the Intelligent and Autonomous Robotic Automobile (IARA) steering control subsystem. For that, we compared the standard solution, based on the Proportional Integral Derivative (PID) control approach, with the N-MPC approach. The PID steering control subsystem works well in IARA for speeds of up to 25 km/h. However, above this speed, IARA’s Steering Plant delays are too high to allow proper operation with a PID approach. We tried and modeled the IARA’s Steering Plant using a neural network and employed this neural model in the N-MPC approach. The N-MPC approach outperformed the PID approach by reducing the impact of IARA’s Steering Plant delays and allowing the autonomous operation of IARA at speeds of up to 37 km/h – an increase of 48% in the maximum stable speed.
id UFES_9c4a1e85065e3f19abc4098a45b828b3
oai_identifier_str oai:repositorio.ufes.br:10/9852
network_acronym_str UFES
network_name_str Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
repository_id_str 2108
spelling Gonçalves, Claudine Santos BadueGuidolini, RânikSantos, Thiago Oliveira dosWolf, Denis Fernando2018-08-02T00:03:50Z2018-08-012018-08-02T00:03:50Z2017-09-04In this work, we propose a Neural Based Model Predictive Control (N-MPC) approach to tackle delays in the steering plant of autonomous cars. We examined the N-MPC approach as an alternative for the implementation of the Intelligent and Autonomous Robotic Automobile (IARA) steering control subsystem. For that, we compared the standard solution, based on the Proportional Integral Derivative (PID) control approach, with the N-MPC approach. The PID steering control subsystem works well in IARA for speeds of up to 25 km/h. However, above this speed, IARA’s Steering Plant delays are too high to allow proper operation with a PID approach. We tried and modeled the IARA’s Steering Plant using a neural network and employed this neural model in the N-MPC approach. The N-MPC approach outperformed the PID approach by reducing the impact of IARA’s Steering Plant delays and allowing the autonomous operation of IARA at speeds of up to 37 km/h – an increase of 48% in the maximum stable speed.Neste trabalho, propomos uma abordagem de Controle Preditivo Baseado em Modelo Neural (Neural Based Model Predictive Control - N-MPC) para lidar com atrasos na planta de direção de carros autônomos. Examinamos a abordagem N-MPC como uma alternativa para a implementação do subsistema de controle de direção da Intelligent and Autonomous Robotic Automobile (IARA). Para isso, comparamos a solução padrão, baseada na abordagem de controle Proporcional Integral Derivativo (PID), com a abordagem N-MPC. O subsistema de controle de direção PID funciona bem na IARA para velocidades de até 25 km/h. No entanto, acima desta velocidade, atrasos na Planta de Direção da IARA são muito elevados para permitir uma operação adequada usando uma abordagem PID. Modelamos a Planta de Direção da IARA usando uma rede neural e empregamos esse modelo neural na abordagem N-MPC. A abordagem N-MPC superou a abordagem PID reduzindo o impacto de atrasos na Planta de Direção de IARA e permitindo a operação autônoma da IARA em velocidades de até 37 km/h um aumento de 48% na velocidade máxima estável.TextGUIDOLINI, Rânik. A neural-based model predictive control to tackle steering delay of the IARA autonomous car. 2017. 64 f. Dissertação (Mestrado em Informática) - Universidade Federal do Espírito Santo, Centro Tecnológico, Vitória, 2017.http://repositorio.ufes.br/handle/10/9852engUniversidade Federal do Espírito SantoMestrado em InformáticaPrograma de Pós-Graduação em InformáticaUFESBRCentro TecnológicoControle preditivoVeículos autônomosRedes neurais (Computação)Controladores PIDCiência da Computação004A neural-based model predictive control to tackle steering delay of the IARA autonomous carinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)instname:Universidade Federal do Espírito Santo (UFES)instacron:UFESORIGINALDissertacao_Mestrado_Ranik_Guidolini.pdfapplication/pdf1818285http://repositorio.ufes.br/bitstreams/949e66cc-afb1-4c2d-ad05-4782b6369419/downloadaa13e12658434d1e3f0f9ffb83d197fbMD5110/98522024-07-17 16:54:41.122oai:repositorio.ufes.br:10/9852http://repositorio.ufes.brRepositório InstitucionalPUBhttp://repositorio.ufes.br/oai/requestopendoar:21082024-10-15T17:57:36.085226Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)false
dc.title.none.fl_str_mv A neural-based model predictive control to tackle steering delay of the IARA autonomous car
title A neural-based model predictive control to tackle steering delay of the IARA autonomous car
spellingShingle A neural-based model predictive control to tackle steering delay of the IARA autonomous car
Guidolini, Rânik
Ciência da Computação
Controle preditivo
Veículos autônomos
Redes neurais (Computação)
Controladores PID
004
title_short A neural-based model predictive control to tackle steering delay of the IARA autonomous car
title_full A neural-based model predictive control to tackle steering delay of the IARA autonomous car
title_fullStr A neural-based model predictive control to tackle steering delay of the IARA autonomous car
title_full_unstemmed A neural-based model predictive control to tackle steering delay of the IARA autonomous car
title_sort A neural-based model predictive control to tackle steering delay of the IARA autonomous car
author Guidolini, Rânik
author_facet Guidolini, Rânik
author_role author
dc.contributor.advisor1.fl_str_mv Gonçalves, Claudine Santos Badue
dc.contributor.author.fl_str_mv Guidolini, Rânik
dc.contributor.referee1.fl_str_mv Santos, Thiago Oliveira dos
dc.contributor.referee2.fl_str_mv Wolf, Denis Fernando
contributor_str_mv Gonçalves, Claudine Santos Badue
Santos, Thiago Oliveira dos
Wolf, Denis Fernando
dc.subject.cnpq.fl_str_mv Ciência da Computação
topic Ciência da Computação
Controle preditivo
Veículos autônomos
Redes neurais (Computação)
Controladores PID
004
dc.subject.br-rjbn.none.fl_str_mv Controle preditivo
Veículos autônomos
Redes neurais (Computação)
Controladores PID
dc.subject.udc.none.fl_str_mv 004
description In this work, we propose a Neural Based Model Predictive Control (N-MPC) approach to tackle delays in the steering plant of autonomous cars. We examined the N-MPC approach as an alternative for the implementation of the Intelligent and Autonomous Robotic Automobile (IARA) steering control subsystem. For that, we compared the standard solution, based on the Proportional Integral Derivative (PID) control approach, with the N-MPC approach. The PID steering control subsystem works well in IARA for speeds of up to 25 km/h. However, above this speed, IARA’s Steering Plant delays are too high to allow proper operation with a PID approach. We tried and modeled the IARA’s Steering Plant using a neural network and employed this neural model in the N-MPC approach. The N-MPC approach outperformed the PID approach by reducing the impact of IARA’s Steering Plant delays and allowing the autonomous operation of IARA at speeds of up to 37 km/h – an increase of 48% in the maximum stable speed.
publishDate 2017
dc.date.issued.fl_str_mv 2017-09-04
dc.date.accessioned.fl_str_mv 2018-08-02T00:03:50Z
dc.date.available.fl_str_mv 2018-08-01
2018-08-02T00:03:50Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv GUIDOLINI, Rânik. A neural-based model predictive control to tackle steering delay of the IARA autonomous car. 2017. 64 f. Dissertação (Mestrado em Informática) - Universidade Federal do Espírito Santo, Centro Tecnológico, Vitória, 2017.
dc.identifier.uri.fl_str_mv http://repositorio.ufes.br/handle/10/9852
identifier_str_mv GUIDOLINI, Rânik. A neural-based model predictive control to tackle steering delay of the IARA autonomous car. 2017. 64 f. Dissertação (Mestrado em Informática) - Universidade Federal do Espírito Santo, Centro Tecnológico, Vitória, 2017.
url http://repositorio.ufes.br/handle/10/9852
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv Text
dc.publisher.none.fl_str_mv Universidade Federal do Espírito Santo
Mestrado em Informática
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Informática
dc.publisher.initials.fl_str_mv UFES
dc.publisher.country.fl_str_mv BR
dc.publisher.department.fl_str_mv Centro Tecnológico
publisher.none.fl_str_mv Universidade Federal do Espírito Santo
Mestrado em Informática
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
instname:Universidade Federal do Espírito Santo (UFES)
instacron:UFES
instname_str Universidade Federal do Espírito Santo (UFES)
instacron_str UFES
institution UFES
reponame_str Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
collection Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
bitstream.url.fl_str_mv http://repositorio.ufes.br/bitstreams/949e66cc-afb1-4c2d-ad05-4782b6369419/download
bitstream.checksum.fl_str_mv aa13e12658434d1e3f0f9ffb83d197fb
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)
repository.mail.fl_str_mv
_version_ 1813022543665168384