Implementação de métodos biométricos bi-modais baseados em fusão de características para reconhecimento de indivíduos
Autor(a) principal: | |
---|---|
Data de Publicação: | 2007 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
Texto Completo: | http://repositorio.ufes.br/handle/10/4110 |
Resumo: | This research proposes a bi-modal personal recognition system based on the information fusion in the level of the characteristics (also called features). The biometric and behavioral features considered in the validation of our proposal are obtained from the video sequences of the human gait and face images. It evaluates some proposals of architectures and algorithms in the implementation of multiple biometric methods for recognition and authentication of individuals through the fusion of face features and the human gait, whose research subject is scarcely available in the scientific literature. The choice of the approach for the fusion of the two particularly considered information sources (not to be confused with multiple attributes of a feature vector from one information source) is justified by the supposition that it must offer a better classification performance, robustness and safety as it allows the night identification at a certain distance. Furthermore, it is considered less intrusive than all the other biometric systems since it presents little or no need for the collaboration of a person to be identified. The research, being an state of the art theme, has few bibliographical references and starts by evaluating the performance of the human recognition system through gait as it applies, on the video sequences, techniques of extraction and selection of silhouette features based on PCA (Principal Component Analysis), ICA (Independent Component Analysis), Wavelet transforms and PoV (Proportion of Variances), combined with the classifiers based on Euclidian distances, SVM (Support Vector Machines) and neural networks with RBF (Radial Base Functions). Using databases of public domain, a special study was carried out on gait aiming at an initial evaluation of its performance in human recognition systems, as well as the choice of methods and techniques more appropriate to make the fusion of this gait with the face images of the individual. As an improvement, on a second step, own databases were obtained based on an experimental setup that allowed the extraction of silhouettes from gait video sequences as well as face images corresponding to each sequence. This research also evaluated the performance of the recognition system when determining the fusion of both biometric features. Then, after the definition of the most adequate architecture, the fusion of two biometric systems face-gait on public domain databases, as well as our particular one, is proposed and implemented. In this final phase of the work, the proposed implementations use extraction techniques and features selection based on gait silhouettes energy, in the proportion of variances (PoV) and in the classification algorithms based on neural networks with radial base functions (RBF). The obtained results allowed the evaluation of the non-error rates, the false acceptance (FAR) and rejection rates (FRR) and the system performance, when the vectors of individual features of the face images alone, the gait video sequences alone, as well as the fusion of both are considered, confirming the validity and viability of the application of our proposal of fusion in the feature level in the bimodal human recognition system |
id |
UFES_a2262e8b5ae8738833cadcdf7c704257 |
---|---|
oai_identifier_str |
oai:repositorio.ufes.br:10/4110 |
network_acronym_str |
UFES |
network_name_str |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
repository_id_str |
2108 |
spelling |
Salles, Evandro Ottoni TeatiniAlmeida, Ailson Rosetti deSalomão, João MarquesBaptista, EdsonMontalvão Filho, Jugurta RosaSarcinelli Filho, MárioBastos Filho, Teodiano Freire2016-08-29T15:32:42Z2016-07-112016-08-29T15:32:42Z2007-08-24This research proposes a bi-modal personal recognition system based on the information fusion in the level of the characteristics (also called features). The biometric and behavioral features considered in the validation of our proposal are obtained from the video sequences of the human gait and face images. It evaluates some proposals of architectures and algorithms in the implementation of multiple biometric methods for recognition and authentication of individuals through the fusion of face features and the human gait, whose research subject is scarcely available in the scientific literature. The choice of the approach for the fusion of the two particularly considered information sources (not to be confused with multiple attributes of a feature vector from one information source) is justified by the supposition that it must offer a better classification performance, robustness and safety as it allows the night identification at a certain distance. Furthermore, it is considered less intrusive than all the other biometric systems since it presents little or no need for the collaboration of a person to be identified. The research, being an state of the art theme, has few bibliographical references and starts by evaluating the performance of the human recognition system through gait as it applies, on the video sequences, techniques of extraction and selection of silhouette features based on PCA (Principal Component Analysis), ICA (Independent Component Analysis), Wavelet transforms and PoV (Proportion of Variances), combined with the classifiers based on Euclidian distances, SVM (Support Vector Machines) and neural networks with RBF (Radial Base Functions). Using databases of public domain, a special study was carried out on gait aiming at an initial evaluation of its performance in human recognition systems, as well as the choice of methods and techniques more appropriate to make the fusion of this gait with the face images of the individual. As an improvement, on a second step, own databases were obtained based on an experimental setup that allowed the extraction of silhouettes from gait video sequences as well as face images corresponding to each sequence. This research also evaluated the performance of the recognition system when determining the fusion of both biometric features. Then, after the definition of the most adequate architecture, the fusion of two biometric systems face-gait on public domain databases, as well as our particular one, is proposed and implemented. In this final phase of the work, the proposed implementations use extraction techniques and features selection based on gait silhouettes energy, in the proportion of variances (PoV) and in the classification algorithms based on neural networks with radial base functions (RBF). The obtained results allowed the evaluation of the non-error rates, the false acceptance (FAR) and rejection rates (FRR) and the system performance, when the vectors of individual features of the face images alone, the gait video sequences alone, as well as the fusion of both are considered, confirming the validity and viability of the application of our proposal of fusion in the feature level in the bimodal human recognition systemEsta pesquisa propõe uma forma de fusão de informações no nível das características para um sistema bi-modal de reconhecimento pessoal. As características biométricas e comportamentais consideradas na validação deste trabalho são obtidas das seqüências de vídeo da forma humana de caminhar e de imagens faciais. Ela sugere arquiteturas e algoritmos que permitem a implementação de reconhecimento e autenticação de indivíduos através da fusão de características faciais e da forma humana de caminhar, objeto de poucos trabalhos disponíveis na literatura. A escolha da abordagem através da fusão das duas características justifica-se pela suposição de que ela deve oferecer um melhor desempenho de classificação, robustez e segurança ao permitir a identificação noturna e à distância. Além disso, é considerada menos intrusiva do que todos os outros sistemas biométricos, por apresentar pouca ou nenhuma necessidade de colaboração da pessoa a ser identificada. A pesquisa, pela atualidade do tema e pelas poucas referências bibliográficas, inicia-se avaliando o desempenho do sistema de reconhecimento pessoal pela forma de caminhar ao se aplicarem, sobre as seqüências de vídeo, técnicas de extração e seleção de características de silhuetas baseadas em análise de componentes principais (PCA - Principal Component Analysis), análise de componentes independentes (ICA - Independent Component Analysis), transformadas Wavelets e proporção de variâncias (PoV Proportion of Variances), em combinação com os classificadores baseados em distâncias Euclidianas, máquinas de vetores suporte (SVM Support Vector Machines) e redes neurais com funções de bases radiais (RBF Radial Basis Function). Utilizando-se bases de dados de domínio público, foi feito um estudo especial sobre a forma de caminhar objetivando uma avaliação inicial do seu desempenho em sistemas de reconhecimento pessoais, bem como a escolha de métodos e técnicas mais apropriadas para efetuar a fusão desta com as imagens faciais do indivíduo. Em seguida, obtiveram-se bases de dados próprias baseando-se em um cenário proposto que permitiu extrair as silhuetas de seqüências de vídeo da forma de caminhar e das imagens faciais correspondentes a cada seqüência. Avaliou-se o desempenho do sistema de reconhecimento quando se estabelece a fusão de ambas as características biométricas. Em uma etapa posterior, após a definição da arquitetura mais adequada, é proposta e implementada a fusão dos dois sistemas biométricos face-forma de caminhar sobre bases de dados de domínio público e proprietárias. Nesta fase final do trabalho, as implementações sugeridas utilizam-se das técnicas de extração e seleção de características baseadas na energia das silhuetas do caminhar, na proporção de variâncias (PoV) e em algoritmos de classificação baseados em redes neurais com funções de bases radiais (RBF). Os resultados apresentados permitiram avaliar as taxas de acertos, de falsa aceitação e falsa rejeição e o desempenho do sistema, quando considerados os vetores de características individuais das imagens faciais e de seqüências de vídeo do caminhar e da fusão das características de ambas, confirmando a validade e viabilidade de aplicação deste trabalho de fusão no nível das características no sistema bi-modal de reconhecimento pessoal.Texthttp://repositorio.ufes.br/handle/10/4110porUniversidade Federal do Espírito SantoDoutorado em Engenharia ElétricaPrograma de Pós-Graduação em Engenharia ElétricaUFESBRCentro TecnológicoSistema bi-modal de reconhecimento pessoalImagens faciaisSistemas de reconhecimento de padrõesInteligência artificialRedes neurais (Computação)Visão por computadorProcessamento de imagensEngenharia Elétrica621.3Implementação de métodos biométricos bi-modais baseados em fusão de características para reconhecimento de indivíduosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)instname:Universidade Federal do Espírito Santo (UFES)instacron:UFESORIGINALtese_2324_TeseSalomao.pdfapplication/pdf1995620http://repositorio.ufes.br/bitstreams/dd0f4ce6-e3fc-4e2d-87c5-db1bb12fc66d/downloada698aa7ccbb9671d5b4ff1eae00a6508MD5110/41102024-07-17 17:00:06.012oai:repositorio.ufes.br:10/4110http://repositorio.ufes.brRepositório InstitucionalPUBhttp://repositorio.ufes.br/oai/requestopendoar:21082024-10-15T17:59:55.044740Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)false |
dc.title.none.fl_str_mv |
Implementação de métodos biométricos bi-modais baseados em fusão de características para reconhecimento de indivíduos |
title |
Implementação de métodos biométricos bi-modais baseados em fusão de características para reconhecimento de indivíduos |
spellingShingle |
Implementação de métodos biométricos bi-modais baseados em fusão de características para reconhecimento de indivíduos Salomão, João Marques Sistema bi-modal de reconhecimento pessoal Imagens faciais Engenharia Elétrica Sistemas de reconhecimento de padrões Inteligência artificial Redes neurais (Computação) Visão por computador Processamento de imagens 621.3 |
title_short |
Implementação de métodos biométricos bi-modais baseados em fusão de características para reconhecimento de indivíduos |
title_full |
Implementação de métodos biométricos bi-modais baseados em fusão de características para reconhecimento de indivíduos |
title_fullStr |
Implementação de métodos biométricos bi-modais baseados em fusão de características para reconhecimento de indivíduos |
title_full_unstemmed |
Implementação de métodos biométricos bi-modais baseados em fusão de características para reconhecimento de indivíduos |
title_sort |
Implementação de métodos biométricos bi-modais baseados em fusão de características para reconhecimento de indivíduos |
author |
Salomão, João Marques |
author_facet |
Salomão, João Marques |
author_role |
author |
dc.contributor.advisor-co1.fl_str_mv |
Salles, Evandro Ottoni Teatini |
dc.contributor.advisor1.fl_str_mv |
Almeida, Ailson Rosetti de |
dc.contributor.author.fl_str_mv |
Salomão, João Marques |
dc.contributor.referee1.fl_str_mv |
Baptista, Edson |
dc.contributor.referee2.fl_str_mv |
Montalvão Filho, Jugurta Rosa |
dc.contributor.referee3.fl_str_mv |
Sarcinelli Filho, Mário |
dc.contributor.referee4.fl_str_mv |
Bastos Filho, Teodiano Freire |
contributor_str_mv |
Salles, Evandro Ottoni Teatini Almeida, Ailson Rosetti de Baptista, Edson Montalvão Filho, Jugurta Rosa Sarcinelli Filho, Mário Bastos Filho, Teodiano Freire |
dc.subject.por.fl_str_mv |
Sistema bi-modal de reconhecimento pessoal Imagens faciais |
topic |
Sistema bi-modal de reconhecimento pessoal Imagens faciais Engenharia Elétrica Sistemas de reconhecimento de padrões Inteligência artificial Redes neurais (Computação) Visão por computador Processamento de imagens 621.3 |
dc.subject.cnpq.fl_str_mv |
Engenharia Elétrica |
dc.subject.br-rjbn.none.fl_str_mv |
Sistemas de reconhecimento de padrões Inteligência artificial Redes neurais (Computação) Visão por computador Processamento de imagens |
dc.subject.udc.none.fl_str_mv |
621.3 |
description |
This research proposes a bi-modal personal recognition system based on the information fusion in the level of the characteristics (also called features). The biometric and behavioral features considered in the validation of our proposal are obtained from the video sequences of the human gait and face images. It evaluates some proposals of architectures and algorithms in the implementation of multiple biometric methods for recognition and authentication of individuals through the fusion of face features and the human gait, whose research subject is scarcely available in the scientific literature. The choice of the approach for the fusion of the two particularly considered information sources (not to be confused with multiple attributes of a feature vector from one information source) is justified by the supposition that it must offer a better classification performance, robustness and safety as it allows the night identification at a certain distance. Furthermore, it is considered less intrusive than all the other biometric systems since it presents little or no need for the collaboration of a person to be identified. The research, being an state of the art theme, has few bibliographical references and starts by evaluating the performance of the human recognition system through gait as it applies, on the video sequences, techniques of extraction and selection of silhouette features based on PCA (Principal Component Analysis), ICA (Independent Component Analysis), Wavelet transforms and PoV (Proportion of Variances), combined with the classifiers based on Euclidian distances, SVM (Support Vector Machines) and neural networks with RBF (Radial Base Functions). Using databases of public domain, a special study was carried out on gait aiming at an initial evaluation of its performance in human recognition systems, as well as the choice of methods and techniques more appropriate to make the fusion of this gait with the face images of the individual. As an improvement, on a second step, own databases were obtained based on an experimental setup that allowed the extraction of silhouettes from gait video sequences as well as face images corresponding to each sequence. This research also evaluated the performance of the recognition system when determining the fusion of both biometric features. Then, after the definition of the most adequate architecture, the fusion of two biometric systems face-gait on public domain databases, as well as our particular one, is proposed and implemented. In this final phase of the work, the proposed implementations use extraction techniques and features selection based on gait silhouettes energy, in the proportion of variances (PoV) and in the classification algorithms based on neural networks with radial base functions (RBF). The obtained results allowed the evaluation of the non-error rates, the false acceptance (FAR) and rejection rates (FRR) and the system performance, when the vectors of individual features of the face images alone, the gait video sequences alone, as well as the fusion of both are considered, confirming the validity and viability of the application of our proposal of fusion in the feature level in the bimodal human recognition system |
publishDate |
2007 |
dc.date.issued.fl_str_mv |
2007-08-24 |
dc.date.accessioned.fl_str_mv |
2016-08-29T15:32:42Z |
dc.date.available.fl_str_mv |
2016-07-11 2016-08-29T15:32:42Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositorio.ufes.br/handle/10/4110 |
url |
http://repositorio.ufes.br/handle/10/4110 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
Text |
dc.publisher.none.fl_str_mv |
Universidade Federal do Espírito Santo Doutorado em Engenharia Elétrica |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Engenharia Elétrica |
dc.publisher.initials.fl_str_mv |
UFES |
dc.publisher.country.fl_str_mv |
BR |
dc.publisher.department.fl_str_mv |
Centro Tecnológico |
publisher.none.fl_str_mv |
Universidade Federal do Espírito Santo Doutorado em Engenharia Elétrica |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) instname:Universidade Federal do Espírito Santo (UFES) instacron:UFES |
instname_str |
Universidade Federal do Espírito Santo (UFES) |
instacron_str |
UFES |
institution |
UFES |
reponame_str |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
collection |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
bitstream.url.fl_str_mv |
http://repositorio.ufes.br/bitstreams/dd0f4ce6-e3fc-4e2d-87c5-db1bb12fc66d/download |
bitstream.checksum.fl_str_mv |
a698aa7ccbb9671d5b4ff1eae00a6508 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES) |
repository.mail.fl_str_mv |
|
_version_ |
1813022560055459840 |