Modelagem matemática da formação e emissão do gás sulfídrico no tratamento de esgotos domésticos

Detalhes bibliográficos
Autor(a) principal: Sá, Leandro Melo de
Data de Publicação: 2011
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
Texto Completo: http://repositorio.ufes.br/handle/10/3914
Resumo: Emission models of gases from wastewater treatment plants (WWTP) are based on a mass balance for each compound in the liquid phase of the treatment facility. This mass balance includes mechanisms of compound removal from liquid phase (volatilization, stripping, biodegradation, chemical oxidation), which result from its interaction with the reaction medium through physical, chemical and biological processes, typical of each treatment process. Emission of odorous gases from sewage treatment comprises a large number of compounds, where hydrogen sulfide (H 2 S) is the main responsible by olfactory nuisance, due to its considerable emission rate and low recognition threshold (0.5 ppb). This compound is capable of causing adverse human health effects and lead to death in high concentrations. Aerobic treatment systems to domestic sewage can oxidize odorous compounds such as H 2 S and convert them into non-odorous compounds. Anaerobic treatment of wastewater containing sulfate may lead to formation of H 2 S, which can volatilize into the atmosphere and to cause environmental impact. Formation of H 2 S is a process in which sulfate acts as electron acceptor during chemical oxidation of organic compounds in a reaction mediated by sulphate-reducing bacteria (SRB), which reduce sulfate in H 2 S. This work aims (1) to verify the relevance of H 2S removal mechanism by chemical oxidation in a submerged aerated biofilter using four models for H 2 S oxidation, (2) to investigate the effect of wind speed on volatilization of H 2 S from quiescent surfaces in a wind tunnel and compare predictions of three volatilization models, (3) to estimate the formation of H 2 S in the liquid phase from an anaerobic reactor (UASB) and compare experimental H 2 S emission rates with predictions of three emission models which consider formation and volatilization of H 2 S in their mass balance. The main mechanisms of H 2 S removal in the biofilter were biodegradation and chemical oxidation. Biodegradation was the main mechanism of H 2 S removal when chemical oxidation was calculated by three of the four oxidation models investigated. Stripping and volatilization presented minimal contributions to H 2 S removal from biofilter. Friction velocity showed weak influence on the overall mass transfer coefficient of H 2 S determined with the use of wind tunnel, pointing that the volatilization of H 2 S can be considered nondependent of wind speed when a friction velocity is less than 0.3 m s -1 . At high wind speeds, H 2 S volatilization can show dependence on friction velocity, as suggested by volatilization models. WATER9 model showed better agreement with experimental results, although it overestimated the overall mass transfer coefficientof H 2 S by a factor of 4.0. Other models have overestimated the overall mass transfer coefficient of H 2S. The formation of H 2 S at the UASB reactor presented an average of 412.5 µg s -1 , equivalent to specific average formation of 15.6 µg m -3 s -1 , and was shown to be mainly due to consumption of acetate (66%), followed by consumption of hydrogen (25%) and propionate (9%). TOXCHEM+ and WATER9 models exhibited a better ability to estimate overall H 2 S emission rate from UASB reactor. Emission models investigated overestimated H2 S emission rate from the settling compartment of UASB reactor. However, prediction of the models resulted within the range of 95% confidence interval of overall average emission rate from reactor, in six out of twelve experiments.
id UFES_a2956ee3206019915082a0cd4cd733e8
oai_identifier_str oai:repositorio.ufes.br:10/3914
network_acronym_str UFES
network_name_str Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
repository_id_str 2108
spelling Reis Junior, Neyval CostaSantos, Jane MeriSá, Leandro Melo deGonçalves, Ricardo FranciVieira, Rodrigo SilveiraMoreira, Davidson MartinsPires, Eduardo Cleto2016-08-29T15:09:49Z2016-07-112016-08-29T15:09:49Z2011-08-26Emission models of gases from wastewater treatment plants (WWTP) are based on a mass balance for each compound in the liquid phase of the treatment facility. This mass balance includes mechanisms of compound removal from liquid phase (volatilization, stripping, biodegradation, chemical oxidation), which result from its interaction with the reaction medium through physical, chemical and biological processes, typical of each treatment process. Emission of odorous gases from sewage treatment comprises a large number of compounds, where hydrogen sulfide (H 2 S) is the main responsible by olfactory nuisance, due to its considerable emission rate and low recognition threshold (0.5 ppb). This compound is capable of causing adverse human health effects and lead to death in high concentrations. Aerobic treatment systems to domestic sewage can oxidize odorous compounds such as H 2 S and convert them into non-odorous compounds. Anaerobic treatment of wastewater containing sulfate may lead to formation of H 2 S, which can volatilize into the atmosphere and to cause environmental impact. Formation of H 2 S is a process in which sulfate acts as electron acceptor during chemical oxidation of organic compounds in a reaction mediated by sulphate-reducing bacteria (SRB), which reduce sulfate in H 2 S. This work aims (1) to verify the relevance of H 2S removal mechanism by chemical oxidation in a submerged aerated biofilter using four models for H 2 S oxidation, (2) to investigate the effect of wind speed on volatilization of H 2 S from quiescent surfaces in a wind tunnel and compare predictions of three volatilization models, (3) to estimate the formation of H 2 S in the liquid phase from an anaerobic reactor (UASB) and compare experimental H 2 S emission rates with predictions of three emission models which consider formation and volatilization of H 2 S in their mass balance. The main mechanisms of H 2 S removal in the biofilter were biodegradation and chemical oxidation. Biodegradation was the main mechanism of H 2 S removal when chemical oxidation was calculated by three of the four oxidation models investigated. Stripping and volatilization presented minimal contributions to H 2 S removal from biofilter. Friction velocity showed weak influence on the overall mass transfer coefficient of H 2 S determined with the use of wind tunnel, pointing that the volatilization of H 2 S can be considered nondependent of wind speed when a friction velocity is less than 0.3 m s -1 . At high wind speeds, H 2 S volatilization can show dependence on friction velocity, as suggested by volatilization models. WATER9 model showed better agreement with experimental results, although it overestimated the overall mass transfer coefficientof H 2 S by a factor of 4.0. Other models have overestimated the overall mass transfer coefficient of H 2S. The formation of H 2 S at the UASB reactor presented an average of 412.5 µg s -1 , equivalent to specific average formation of 15.6 µg m -3 s -1 , and was shown to be mainly due to consumption of acetate (66%), followed by consumption of hydrogen (25%) and propionate (9%). TOXCHEM+ and WATER9 models exhibited a better ability to estimate overall H 2 S emission rate from UASB reactor. Emission models investigated overestimated H2 S emission rate from the settling compartment of UASB reactor. However, prediction of the models resulted within the range of 95% confidence interval of overall average emission rate from reactor, in six out of twelve experiments.Os modelos de emissão de gases em estações de tratamento de esgotos (ETE) são baseados em um balanço de massa para o composto na fase líquida em cada processo de tratamento. Nesse balanço de massa são incluídos os mecanismos de remoção do composto da fase líquida (volatilização, stripping, biodegradação, oxidação química), resultantes da sua interação com o meio reacional, através de processos físicos, químicos e biológicos, típicos de cada processo de tratamento. A emissão de gases odorantes no tratamento de esgotos domésticos compreende um grande número de compostos, sendo o sulfeto de hidrogênio (H2S) o principal responsável por incômodo olfativo, devido a sua considerável taxa de emissão e ao seu baixo limite de percepção (0,5 ppb). Esse composto também é capaz de causar efeitos adversos à saúde humana podendo levar a morte em altas concentrações. Os sistemas de tratamento aeróbios de esgotos podem oxidar compostos odorantes, como o H2S, e convertê-los em compostos não odorantes. O tratamento anaeróbio de esgoto contendo sulfato pode levar a formação de H2S, que pode volatilizar para atmosfera e causar impacto ambiental. A formação de H2S é um processo no qual o sulfato atua como aceptor de elétrons durante a oxidação de compostos orgânicos, numa reação mediada por bactérias redutoras de sulfato (BRS), que reduzem sulfato em H2S. Este trabalho objetiva (1) verificar a importância do mecanismo de remoção de H2S por oxidação química em um biofiltro aerado submerso usando quatro modelos para a oxidação química do H2S; (2) investigar o efeito da velocidade do vento sobre a volatilização do H2S a partir de superfícies quiescentes em um túnel de vento e comparar com as predições de três modelos de volatilização; (3) estimar a formação de H2S na fase líquida em um reator anaeróbio (UASB), e comparar a emissão de H2S determinada experimentalmente com as predições de três modelos de emissão, considerando a formação e a volatilização de H2S no balanço de massa dos modelos de emissão. Os principais mecanismos de remoção de H2S no biofiltro foram a biodegradação e a oxidação química. A biodegradação foi o principal mecanismo de remoção de H2S quando a oxidação química foi calculada por três dos quatro modelos de oxidação química investigados. Stripping e volatilização apresentaram mínimas contribuições para a remoção de H2S no biofiltro. A velocidade de fricção mostrou fraca influência sobre o coeficiente global de transferência de massa para o H2S determinado com túnel de vento, indicando que a volatilização do H2S pode ser considerada independente da velocidade do vento quando a velocidade de fricção é menor que 0,3 m s-1. Para elevadas velocidades do vento, o H2S pode exibir volatilização dependente da velocidade de fricção, como sugerido nos modelos de volatilização. O modelo WATER9 apresentou melhor concordância com os resultados experimentais, embora tenha superestimado o coeficiente global de transferência de massa para o H2S por um fator de 4,0. Os demais modelos superestimaram o coeficiente global de transferência de massa para o H2S. A formação de H2S no reator UASB apresentou média de 412,5 g s-1, equivalente a formação média específica de 15,6 g m-3 s-1, e mostrou ser majoritariamente devido ao consumo de acetato (66%), seguida do uso de hidrogênio (25%) e da degradação de propionato (9%). Os modelos TOXCHEM+ e WATER9 exibiram melhor habilidade em estimar a taxa de emissão total de H2S no reator UASB. Os modelos de emissão investigados superestimaram a taxa de emissão de H2S no decantador do reator. Entretanto, a predição dos modelos resultou dentro do intervalo de confiança de 95% para a taxa de emissão total média do reator, em seis de doze experimentos.Texthttp://repositorio.ufes.br/handle/10/3914porUniversidade Federal do Espírito SantoDoutorado em Engenharia AmbientalPrograma de Pós-Graduação em Engenharia AmbientalUFESBRCentro TecnológicoHydrogen sulphideemission modelsvolatilizationH2S formationsulphate reductionchemical oxidationformação de H2Sredução de sulfatooxidação químicaSulfeto de hidrogêniomodelos de emissãovolatilizaçãoReação de oxidação-reduçãoArÁguas residuais - Purificação - OxidaçãoControle de odor.EsgotosEngenharia sanitária628Modelagem matemática da formação e emissão do gás sulfídrico no tratamento de esgotos domésticosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)instname:Universidade Federal do Espírito Santo (UFES)instacron:UFESORIGINALtese_5239_Leandro_Melo _de Sa_Tese_PPGEA_2011.pdfapplication/pdf1619317http://repositorio.ufes.br/bitstreams/dd96bc6d-88f6-4d83-8861-0e9458d88451/download7431cf22873b65867174331de17ae1c9MD5110/39142024-07-17 17:01:08.796oai:repositorio.ufes.br:10/3914http://repositorio.ufes.brRepositório InstitucionalPUBhttp://repositorio.ufes.br/oai/requestopendoar:21082024-10-15T17:58:43.193155Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)false
dc.title.none.fl_str_mv Modelagem matemática da formação e emissão do gás sulfídrico no tratamento de esgotos domésticos
title Modelagem matemática da formação e emissão do gás sulfídrico no tratamento de esgotos domésticos
spellingShingle Modelagem matemática da formação e emissão do gás sulfídrico no tratamento de esgotos domésticos
Sá, Leandro Melo de
Hydrogen sulphide
emission models
volatilization
H2S formation
sulphate reduction
chemical oxidation
formação de H2S
redução de sulfato
oxidação química
Sulfeto de hidrogênio
modelos de emissão
volatilização
Engenharia sanitária
Reação de oxidação-redução
Ar
Águas residuais - Purificação - Oxidação
Controle de odor.
Esgotos
628
title_short Modelagem matemática da formação e emissão do gás sulfídrico no tratamento de esgotos domésticos
title_full Modelagem matemática da formação e emissão do gás sulfídrico no tratamento de esgotos domésticos
title_fullStr Modelagem matemática da formação e emissão do gás sulfídrico no tratamento de esgotos domésticos
title_full_unstemmed Modelagem matemática da formação e emissão do gás sulfídrico no tratamento de esgotos domésticos
title_sort Modelagem matemática da formação e emissão do gás sulfídrico no tratamento de esgotos domésticos
author Sá, Leandro Melo de
author_facet Sá, Leandro Melo de
author_role author
dc.contributor.advisor-co1.fl_str_mv Reis Junior, Neyval Costa
dc.contributor.advisor1.fl_str_mv Santos, Jane Meri
dc.contributor.author.fl_str_mv Sá, Leandro Melo de
dc.contributor.referee1.fl_str_mv Gonçalves, Ricardo Franci
dc.contributor.referee2.fl_str_mv Vieira, Rodrigo Silveira
dc.contributor.referee3.fl_str_mv Moreira, Davidson Martins
dc.contributor.referee4.fl_str_mv Pires, Eduardo Cleto
contributor_str_mv Reis Junior, Neyval Costa
Santos, Jane Meri
Gonçalves, Ricardo Franci
Vieira, Rodrigo Silveira
Moreira, Davidson Martins
Pires, Eduardo Cleto
dc.subject.eng.fl_str_mv Hydrogen sulphide
emission models
volatilization
H2S formation
sulphate reduction
chemical oxidation
topic Hydrogen sulphide
emission models
volatilization
H2S formation
sulphate reduction
chemical oxidation
formação de H2S
redução de sulfato
oxidação química
Sulfeto de hidrogênio
modelos de emissão
volatilização
Engenharia sanitária
Reação de oxidação-redução
Ar
Águas residuais - Purificação - Oxidação
Controle de odor.
Esgotos
628
dc.subject.por.fl_str_mv formação de H2S
redução de sulfato
oxidação química
Sulfeto de hidrogênio
modelos de emissão
volatilização
dc.subject.cnpq.fl_str_mv Engenharia sanitária
dc.subject.br-rjbn.none.fl_str_mv Reação de oxidação-redução
Ar
Águas residuais - Purificação - Oxidação
Controle de odor.
Esgotos
dc.subject.udc.none.fl_str_mv 628
description Emission models of gases from wastewater treatment plants (WWTP) are based on a mass balance for each compound in the liquid phase of the treatment facility. This mass balance includes mechanisms of compound removal from liquid phase (volatilization, stripping, biodegradation, chemical oxidation), which result from its interaction with the reaction medium through physical, chemical and biological processes, typical of each treatment process. Emission of odorous gases from sewage treatment comprises a large number of compounds, where hydrogen sulfide (H 2 S) is the main responsible by olfactory nuisance, due to its considerable emission rate and low recognition threshold (0.5 ppb). This compound is capable of causing adverse human health effects and lead to death in high concentrations. Aerobic treatment systems to domestic sewage can oxidize odorous compounds such as H 2 S and convert them into non-odorous compounds. Anaerobic treatment of wastewater containing sulfate may lead to formation of H 2 S, which can volatilize into the atmosphere and to cause environmental impact. Formation of H 2 S is a process in which sulfate acts as electron acceptor during chemical oxidation of organic compounds in a reaction mediated by sulphate-reducing bacteria (SRB), which reduce sulfate in H 2 S. This work aims (1) to verify the relevance of H 2S removal mechanism by chemical oxidation in a submerged aerated biofilter using four models for H 2 S oxidation, (2) to investigate the effect of wind speed on volatilization of H 2 S from quiescent surfaces in a wind tunnel and compare predictions of three volatilization models, (3) to estimate the formation of H 2 S in the liquid phase from an anaerobic reactor (UASB) and compare experimental H 2 S emission rates with predictions of three emission models which consider formation and volatilization of H 2 S in their mass balance. The main mechanisms of H 2 S removal in the biofilter were biodegradation and chemical oxidation. Biodegradation was the main mechanism of H 2 S removal when chemical oxidation was calculated by three of the four oxidation models investigated. Stripping and volatilization presented minimal contributions to H 2 S removal from biofilter. Friction velocity showed weak influence on the overall mass transfer coefficient of H 2 S determined with the use of wind tunnel, pointing that the volatilization of H 2 S can be considered nondependent of wind speed when a friction velocity is less than 0.3 m s -1 . At high wind speeds, H 2 S volatilization can show dependence on friction velocity, as suggested by volatilization models. WATER9 model showed better agreement with experimental results, although it overestimated the overall mass transfer coefficientof H 2 S by a factor of 4.0. Other models have overestimated the overall mass transfer coefficient of H 2S. The formation of H 2 S at the UASB reactor presented an average of 412.5 µg s -1 , equivalent to specific average formation of 15.6 µg m -3 s -1 , and was shown to be mainly due to consumption of acetate (66%), followed by consumption of hydrogen (25%) and propionate (9%). TOXCHEM+ and WATER9 models exhibited a better ability to estimate overall H 2 S emission rate from UASB reactor. Emission models investigated overestimated H2 S emission rate from the settling compartment of UASB reactor. However, prediction of the models resulted within the range of 95% confidence interval of overall average emission rate from reactor, in six out of twelve experiments.
publishDate 2011
dc.date.issued.fl_str_mv 2011-08-26
dc.date.accessioned.fl_str_mv 2016-08-29T15:09:49Z
dc.date.available.fl_str_mv 2016-07-11
2016-08-29T15:09:49Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufes.br/handle/10/3914
url http://repositorio.ufes.br/handle/10/3914
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv Text
dc.publisher.none.fl_str_mv Universidade Federal do Espírito Santo
Doutorado em Engenharia Ambiental
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Engenharia Ambiental
dc.publisher.initials.fl_str_mv UFES
dc.publisher.country.fl_str_mv BR
dc.publisher.department.fl_str_mv Centro Tecnológico
publisher.none.fl_str_mv Universidade Federal do Espírito Santo
Doutorado em Engenharia Ambiental
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
instname:Universidade Federal do Espírito Santo (UFES)
instacron:UFES
instname_str Universidade Federal do Espírito Santo (UFES)
instacron_str UFES
institution UFES
reponame_str Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
collection Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
bitstream.url.fl_str_mv http://repositorio.ufes.br/bitstreams/dd96bc6d-88f6-4d83-8861-0e9458d88451/download
bitstream.checksum.fl_str_mv 7431cf22873b65867174331de17ae1c9
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)
repository.mail.fl_str_mv
_version_ 1813022551140466688