Polymer optical fiber sensors for healthcare devices : from material analysis to practical applications
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
Texto Completo: | http://repositorio.ufes.br/handle/10/10922 |
Resumo: | Advances in medicine and improvements to quality of life have led to an increase in the life expectancy of the general population. An ageing world population has placed demands on the use of assistive technology and in particular towards novel robotic assistance and rehabilitation devices. In order to achieve their functionalities, such robotic devices highly rely on sensors systems, which indicate the necessity of novel sensing solutions to cope with the continuously increasing performance standards of healthcare devices. Besides the electromagnetic field immunity, polymer optical fiber (POF) sensors have additional advantages due to its material features such as high flexibility, lower Young’s modulus (enabling high sensitivity), higher elastic limits and impact resistance. Such advantages are well aligned with the instrumentation requirements of many healthcare devices and in movement analysis. Aiming at these advantages, this Thesis presents the development of POF sensors for healthcare devices. The sensors are developed using two different (and complementary) approaches: (i) Intensity variation-based sensors for low-cost and portable systems; (ii) Fiber Bragg gratings (FBGs), which were inscribed using a femtosecond laser through the direct write plane-byplane inscription method, with the goal of taking advantage of the multiplexing capabilities and high precision of FBGs. Even though POFs presented the aforementioned advantages on sensing applications, polymers by their very own nature are viscoelastic materials, which do not have constant response with stress or strain. Such behavior leads to creep, hysteresis and nonlinearities on POF sensors when the fiber is under stress or strain. In order to compensate these effects, first, a dynamic mechanical analysis is made on two different POF materials: polymethyl methacrylate (PMMA) and cyclic transparent optical polymer (CYTOP) for the characterization of the viscoelastic effects on these fibers. After knowing the material properties, compensation techniques for undesirable effects on POF sensors e.g. hysteresis and nonlinearities, are proposed and validated in different conditions for both intensity variation-based sensors (using PMMA POFs) and FBGs (using CYTOP fibers), obtaining reliable sensors for dynamic measurements of temperature, humidity, strain, force and curvature. Then, both intensity variation- and FBG-based sensors are applied on the instrumentation of exoskeletons, active orthosis and smart walkers. In addition, two instrumented insoles were proposed: one for gait phase estimation in a functional electric stimulation system for gait assistance and the other for plantar pressure monitoring and ground reaction forces assessment using an innovative multiplexing technique for intensity variation-based sensors, resulting in a highly customizable and low-cost system with 15 pressure points. The proposed characterization method for POF materials, compensation techniques and applications in healthcare devices proposed in this Thesis pave the way for novel instrumentation approaches in robotic assistance devices using the proposed flexible sensors, which can be especially desirable not only in the rigid robots presented, but also in soft robotics applications. |
id |
UFES_a6474189c88127ac2efbcbc7ee924427 |
---|---|
oai_identifier_str |
oai:repositorio.ufes.br:10/10922 |
network_acronym_str |
UFES |
network_name_str |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
repository_id_str |
2108 |
spelling |
Pontes, Maria JoséMarques, Carlos Alberto FerreiraFrizera Neto, AnselmoLeal Junior, Arnaldo GomesAntunes, Paulo Fernando da CostaSiqueira, Adriano Almeida GonçalvesRibeiro, Moisés Renato NunesCastellani, Carlos Eduardo Schmidt2019-03-11T13:03:43Z2019-03-112019-03-11T13:03:43Z2018-12-17Advances in medicine and improvements to quality of life have led to an increase in the life expectancy of the general population. An ageing world population has placed demands on the use of assistive technology and in particular towards novel robotic assistance and rehabilitation devices. In order to achieve their functionalities, such robotic devices highly rely on sensors systems, which indicate the necessity of novel sensing solutions to cope with the continuously increasing performance standards of healthcare devices. Besides the electromagnetic field immunity, polymer optical fiber (POF) sensors have additional advantages due to its material features such as high flexibility, lower Young’s modulus (enabling high sensitivity), higher elastic limits and impact resistance. Such advantages are well aligned with the instrumentation requirements of many healthcare devices and in movement analysis. Aiming at these advantages, this Thesis presents the development of POF sensors for healthcare devices. The sensors are developed using two different (and complementary) approaches: (i) Intensity variation-based sensors for low-cost and portable systems; (ii) Fiber Bragg gratings (FBGs), which were inscribed using a femtosecond laser through the direct write plane-byplane inscription method, with the goal of taking advantage of the multiplexing capabilities and high precision of FBGs. Even though POFs presented the aforementioned advantages on sensing applications, polymers by their very own nature are viscoelastic materials, which do not have constant response with stress or strain. Such behavior leads to creep, hysteresis and nonlinearities on POF sensors when the fiber is under stress or strain. In order to compensate these effects, first, a dynamic mechanical analysis is made on two different POF materials: polymethyl methacrylate (PMMA) and cyclic transparent optical polymer (CYTOP) for the characterization of the viscoelastic effects on these fibers. After knowing the material properties, compensation techniques for undesirable effects on POF sensors e.g. hysteresis and nonlinearities, are proposed and validated in different conditions for both intensity variation-based sensors (using PMMA POFs) and FBGs (using CYTOP fibers), obtaining reliable sensors for dynamic measurements of temperature, humidity, strain, force and curvature. Then, both intensity variation- and FBG-based sensors are applied on the instrumentation of exoskeletons, active orthosis and smart walkers. In addition, two instrumented insoles were proposed: one for gait phase estimation in a functional electric stimulation system for gait assistance and the other for plantar pressure monitoring and ground reaction forces assessment using an innovative multiplexing technique for intensity variation-based sensors, resulting in a highly customizable and low-cost system with 15 pressure points. The proposed characterization method for POF materials, compensation techniques and applications in healthcare devices proposed in this Thesis pave the way for novel instrumentation approaches in robotic assistance devices using the proposed flexible sensors, which can be especially desirable not only in the rigid robots presented, but also in soft robotics applications.Avanços na medicina e na qualidade de vida levaram à um aumento na expectativa de vida da população em geral. O envelhecimento da população mundial promove demandas em relação ao uso de tecnologias assistivas, em particular, em relação à novos dispositivos robóticos para reabilitação e assistência. Para atingir suas funcionalidades, estes dispositivos robóticos dependem dos seus sistemas de sensores, indicando a necessidade de novas soluções de sensoriamento para lidar com o aumento contínuo nos padrões de desempenho dos dispositivos de apoio à saúde. Além da imunidade à interferências eletromagnéticas, sensores baseados em fibras ópticas poliméricas (POF, do inglês polymer optical fibers) possuem vantagens adicionais relacionadas as propriedades do material, tais como flexibilidade, menor módulo de Young (permitindo maior sensibilidade), maiores limites elásticos e resistência à impactos. Tais vantagens estão de acordo com os requerimentos para instrumentação de muitos dispositivos de apoio à saúde e em análise de movimento. Visando essas vantagens, esta Tese apresenta o desenvolvimento de sensores baseados em POFs para dispositivos de apoio à saúde. Os sensores são desenvolvidos utilizando duas abordagens diferentes (e complementares): (i) sensores baseados em variação de intensidade para sistemas portáteis e de baixo custo; (ii) Redes de Bragg em fibra (FBG, do inglês fiber Bragg gratings) que foram gravadas usando laser de femtosegundo através do método de gravação direta plano-a-plano com o objetivo de aproveitar as vantagens de alta capacidade de multiplexação e alta precisão dos sensores baseados em FBGs. Embora POFs apresentem as vantagens supracitadas para aplicações em sensores, polímeros, por sua própria natureza, são materiais viscoelásticos que não possuem resposta constante em relação à tensões ou deformações mecânicas. Este comportamento resulta em fluência, histerese e não-linearidades na resposta dos sensores em POF quando a fibra está submetida à tensões ou deformações mecânicas. Para compensar esses efeitos, primeiro, uma análise mecânica dinâmica é realizada em POFs de dois diferentes materiais: polimetil metacrilato (PMMA) e polímero óptico transparente cíclico (CYTOP, do inglês cyclic transparente optical polymer) para a caracterização dos efeitos viscoelásticos nessas fibras. Após conhecer as propriedades do material, técnicas de compensação para os efeitos indesejados em sensores baseados em POF e.g. histerese e não-linearidades, são propostas e validadas em diferentes condições para sensores baseados em variação de intensidade (usando fibras de PMMA) e FBGs (usando fibras CYTOP), obtendo sensores confiáveis para medições dinâmicas de temperatura, umidade, deformação, força e curvatura. Então, os sensores baseados em variação de intensidade e FBGs são aplicados na instrumentação de exoesqueletos, órteses ativas e andadores inteligentes. Além disso, duas palmilhas instrumentadas são propostas: uma para estimar fases da marcha em sistemas para auxílio à locomoção baseados em estimulação elétrica funcional e outra para monitoramento de pressão plantar e forças de reação do solo usando uma inovadora técnica de multiplexação para sensores baseados em variação de intensidade, resultando num sistema altamente customizável e de baixo custo com 15 pontos de medição de pressão plantar. Os métodos de caracterização propostos para os materiais das fibras, as técnicas de compensação e as aplicações em dispositivos de apoio à saúde propostas nesta Tese preparam o caminho para novas abordagens de instrumentação em dispositivos robóticos usando os sensores flexíveis propostos, algo que desejável não só para os robôs rígidos apresentados, mas também em aplicações de robótica flexível.Texthttp://repositorio.ufes.br/handle/10/10922engUniversidade Federal do Espírito SantoDoutorado em Engenharia ElétricaPrograma de Pós-Graduação em Engenharia ElétricaUFESBRCentro TecnológicoFibra óptica poliméricaRedes de bragg em fibraSensores em fibra ópticaViscoelasticidadeAnálise mecânica dinâmicaRobôs vestíveisAndadores inteligentesFibras ópticasPolímerosEngenharia Elétrica621.3Polymer optical fiber sensors for healthcare devices : from material analysis to practical applicationsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)instname:Universidade Federal do Espírito Santo (UFES)instacron:UFESORIGINALtese_12794_Tese_Arnaldo_final1.pdfapplication/pdf7612564http://repositorio.ufes.br/bitstreams/cec62d09-e542-4511-bbf4-6bfe9f8365fb/download70d6b042e247e97e67193a7c29e429cdMD5110/109222024-07-17 16:55:03.285oai:repositorio.ufes.br:10/10922http://repositorio.ufes.brRepositório InstitucionalPUBhttp://repositorio.ufes.br/oai/requestopendoar:21082024-10-15T17:59:29.043164Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)false |
dc.title.none.fl_str_mv |
Polymer optical fiber sensors for healthcare devices : from material analysis to practical applications |
title |
Polymer optical fiber sensors for healthcare devices : from material analysis to practical applications |
spellingShingle |
Polymer optical fiber sensors for healthcare devices : from material analysis to practical applications Leal Junior, Arnaldo Gomes Fibra óptica polimérica Redes de bragg em fibra Sensores em fibra óptica Viscoelasticidade Análise mecânica dinâmica Robôs vestíveis Andadores inteligentes Engenharia Elétrica Fibras ópticas Polímeros 621.3 |
title_short |
Polymer optical fiber sensors for healthcare devices : from material analysis to practical applications |
title_full |
Polymer optical fiber sensors for healthcare devices : from material analysis to practical applications |
title_fullStr |
Polymer optical fiber sensors for healthcare devices : from material analysis to practical applications |
title_full_unstemmed |
Polymer optical fiber sensors for healthcare devices : from material analysis to practical applications |
title_sort |
Polymer optical fiber sensors for healthcare devices : from material analysis to practical applications |
author |
Leal Junior, Arnaldo Gomes |
author_facet |
Leal Junior, Arnaldo Gomes |
author_role |
author |
dc.contributor.advisor-co1.fl_str_mv |
Pontes, Maria José |
dc.contributor.advisor-co2.fl_str_mv |
Marques, Carlos Alberto Ferreira |
dc.contributor.advisor1.fl_str_mv |
Frizera Neto, Anselmo |
dc.contributor.author.fl_str_mv |
Leal Junior, Arnaldo Gomes |
dc.contributor.referee1.fl_str_mv |
Antunes, Paulo Fernando da Costa |
dc.contributor.referee2.fl_str_mv |
Siqueira, Adriano Almeida Gonçalves |
dc.contributor.referee3.fl_str_mv |
Ribeiro, Moisés Renato Nunes |
dc.contributor.referee4.fl_str_mv |
Castellani, Carlos Eduardo Schmidt |
contributor_str_mv |
Pontes, Maria José Marques, Carlos Alberto Ferreira Frizera Neto, Anselmo Antunes, Paulo Fernando da Costa Siqueira, Adriano Almeida Gonçalves Ribeiro, Moisés Renato Nunes Castellani, Carlos Eduardo Schmidt |
dc.subject.por.fl_str_mv |
Fibra óptica polimérica Redes de bragg em fibra Sensores em fibra óptica Viscoelasticidade Análise mecânica dinâmica Robôs vestíveis Andadores inteligentes |
topic |
Fibra óptica polimérica Redes de bragg em fibra Sensores em fibra óptica Viscoelasticidade Análise mecânica dinâmica Robôs vestíveis Andadores inteligentes Engenharia Elétrica Fibras ópticas Polímeros 621.3 |
dc.subject.cnpq.fl_str_mv |
Engenharia Elétrica |
dc.subject.br-rjbn.none.fl_str_mv |
Fibras ópticas Polímeros |
dc.subject.udc.none.fl_str_mv |
621.3 |
description |
Advances in medicine and improvements to quality of life have led to an increase in the life expectancy of the general population. An ageing world population has placed demands on the use of assistive technology and in particular towards novel robotic assistance and rehabilitation devices. In order to achieve their functionalities, such robotic devices highly rely on sensors systems, which indicate the necessity of novel sensing solutions to cope with the continuously increasing performance standards of healthcare devices. Besides the electromagnetic field immunity, polymer optical fiber (POF) sensors have additional advantages due to its material features such as high flexibility, lower Young’s modulus (enabling high sensitivity), higher elastic limits and impact resistance. Such advantages are well aligned with the instrumentation requirements of many healthcare devices and in movement analysis. Aiming at these advantages, this Thesis presents the development of POF sensors for healthcare devices. The sensors are developed using two different (and complementary) approaches: (i) Intensity variation-based sensors for low-cost and portable systems; (ii) Fiber Bragg gratings (FBGs), which were inscribed using a femtosecond laser through the direct write plane-byplane inscription method, with the goal of taking advantage of the multiplexing capabilities and high precision of FBGs. Even though POFs presented the aforementioned advantages on sensing applications, polymers by their very own nature are viscoelastic materials, which do not have constant response with stress or strain. Such behavior leads to creep, hysteresis and nonlinearities on POF sensors when the fiber is under stress or strain. In order to compensate these effects, first, a dynamic mechanical analysis is made on two different POF materials: polymethyl methacrylate (PMMA) and cyclic transparent optical polymer (CYTOP) for the characterization of the viscoelastic effects on these fibers. After knowing the material properties, compensation techniques for undesirable effects on POF sensors e.g. hysteresis and nonlinearities, are proposed and validated in different conditions for both intensity variation-based sensors (using PMMA POFs) and FBGs (using CYTOP fibers), obtaining reliable sensors for dynamic measurements of temperature, humidity, strain, force and curvature. Then, both intensity variation- and FBG-based sensors are applied on the instrumentation of exoskeletons, active orthosis and smart walkers. In addition, two instrumented insoles were proposed: one for gait phase estimation in a functional electric stimulation system for gait assistance and the other for plantar pressure monitoring and ground reaction forces assessment using an innovative multiplexing technique for intensity variation-based sensors, resulting in a highly customizable and low-cost system with 15 pressure points. The proposed characterization method for POF materials, compensation techniques and applications in healthcare devices proposed in this Thesis pave the way for novel instrumentation approaches in robotic assistance devices using the proposed flexible sensors, which can be especially desirable not only in the rigid robots presented, but also in soft robotics applications. |
publishDate |
2018 |
dc.date.issued.fl_str_mv |
2018-12-17 |
dc.date.accessioned.fl_str_mv |
2019-03-11T13:03:43Z |
dc.date.available.fl_str_mv |
2019-03-11 2019-03-11T13:03:43Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositorio.ufes.br/handle/10/10922 |
url |
http://repositorio.ufes.br/handle/10/10922 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
Text |
dc.publisher.none.fl_str_mv |
Universidade Federal do Espírito Santo Doutorado em Engenharia Elétrica |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Engenharia Elétrica |
dc.publisher.initials.fl_str_mv |
UFES |
dc.publisher.country.fl_str_mv |
BR |
dc.publisher.department.fl_str_mv |
Centro Tecnológico |
publisher.none.fl_str_mv |
Universidade Federal do Espírito Santo Doutorado em Engenharia Elétrica |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) instname:Universidade Federal do Espírito Santo (UFES) instacron:UFES |
instname_str |
Universidade Federal do Espírito Santo (UFES) |
instacron_str |
UFES |
institution |
UFES |
reponame_str |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
collection |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
bitstream.url.fl_str_mv |
http://repositorio.ufes.br/bitstreams/cec62d09-e542-4511-bbf4-6bfe9f8365fb/download |
bitstream.checksum.fl_str_mv |
70d6b042e247e97e67193a7c29e429cd |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES) |
repository.mail.fl_str_mv |
|
_version_ |
1813022556938043392 |