Lógica Fuzzy Aplicada Na Avaliação Da Vulnerabilidade Ambiental Da Vegetação No Bioma Mata Atlântica, Estado Do Espírito Santo, Brasil

Detalhes bibliográficos
Autor(a) principal: Santos, Elaine Cordeiro dos
Data de Publicação: 2024
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
Texto Completo: http://repositorio.ufes.br/handle/10/17454
Resumo: The Atlantic Forest, a biome of remarkable biodiversity, faces conservation challenges due to intense anthropogenic pressure resulting in continuous loss of forest areas. In order to analyze the areas most susceptible to environmental vulnerability of vegetation in the Atlantic Forest biome of Espírito Santo, ten variables were selected, divided into two categories: environmental and anthropogenic, for the years 2012 and 2022. Data from MapBiomas for Land Use and Cover (LUC), Pasture Quality and Fire Scars, and from the Sistema Integrado de Bases Geoespaciais do estado do Espiríto Santo (GEOBASES) for Road Proximity were used. Fuzzy inference was applied in the elaboration of the environmental vulnerability map, with five classes: Very High, High, Moderate, Low, and Very Low. Subsequently, the environmental vulnerability map was compared with the phytophysiognomies of the Atlantic Forest biome, obtained from the Instituto Estadual de Meio Ambiente e Recursos Hídricos (IEMA). In the years analyzed, the Pasture class was the most representative in LUC area, with a reduction in area from 2012 (21,740.78 km²) to 2022 (19,752.54 km²) which is reflected in the reduction of area in the categories of Severely Degraded Pasture (970.492 km²), Moderately Degraded (96.092 km²), and Pasture without signs of Degradation (921.65 km²). In 2022, the area with Very High environmental vulnerability decreased compared to the year 2012. This reduction was less pronounced in the area occupied by the phytophysiognomy of Seasonal Semideciduous Forest (reduction of 0.39 km²). The results demonstrated the application of geotechnologies and fuzzy logic as strategic tools in spatial analysis and environmental data generation. The integration of these techniques enabled the analysis of environmental vulnerability classes based on established variables, which can support the management and monitoring of the most vulnerable vegetation areas in the state of Espírito Santo.
id UFES_a8af87c868085c5d3b61f622ffff1b59
oai_identifier_str oai:repositorio.ufes.br:10/17454
network_acronym_str UFES
network_name_str Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
repository_id_str 2108
spelling 83Moreira, Taís Rizzohttps://orcid.org/0000-0001-5536-6286http://lattes.cnpq.br/6717864186103246 Santos, Alexandre Rosa doshttps://orcid.org/0000-0003-2617-9451http://lattes.cnpq.br/7125826645310758Santos, Elaine Cordeiro doshttps://orcid.org/0000-0003-4502-6055http://lattes.cnpq.br/9270550795921337Andrade, Rosane Gomes da Silvahttps://orcid.org/0000-0002-2469-0662http://lattes.cnpq.br/6872836789433835Ferrari, Jéferson Luiz https://orcid.org/0000-0001-5663-6428http://lattes.cnpq.br/5213847780149836Silva, Jeferson Pereira Martins https://orcid.org/0000-0003-1552-1127http://lattes.cnpq.br/6748966859692740Santos, Alexandre Rosa doshttps://orcid.org/0000-0003-2617-9451http://lattes.cnpq.br/71258266453107582024-06-21T13:10:36Z2024-06-21T13:10:36Z2024-02-22The Atlantic Forest, a biome of remarkable biodiversity, faces conservation challenges due to intense anthropogenic pressure resulting in continuous loss of forest areas. In order to analyze the areas most susceptible to environmental vulnerability of vegetation in the Atlantic Forest biome of Espírito Santo, ten variables were selected, divided into two categories: environmental and anthropogenic, for the years 2012 and 2022. Data from MapBiomas for Land Use and Cover (LUC), Pasture Quality and Fire Scars, and from the Sistema Integrado de Bases Geoespaciais do estado do Espiríto Santo (GEOBASES) for Road Proximity were used. Fuzzy inference was applied in the elaboration of the environmental vulnerability map, with five classes: Very High, High, Moderate, Low, and Very Low. Subsequently, the environmental vulnerability map was compared with the phytophysiognomies of the Atlantic Forest biome, obtained from the Instituto Estadual de Meio Ambiente e Recursos Hídricos (IEMA). In the years analyzed, the Pasture class was the most representative in LUC area, with a reduction in area from 2012 (21,740.78 km²) to 2022 (19,752.54 km²) which is reflected in the reduction of area in the categories of Severely Degraded Pasture (970.492 km²), Moderately Degraded (96.092 km²), and Pasture without signs of Degradation (921.65 km²). In 2022, the area with Very High environmental vulnerability decreased compared to the year 2012. This reduction was less pronounced in the area occupied by the phytophysiognomy of Seasonal Semideciduous Forest (reduction of 0.39 km²). The results demonstrated the application of geotechnologies and fuzzy logic as strategic tools in spatial analysis and environmental data generation. The integration of these techniques enabled the analysis of environmental vulnerability classes based on established variables, which can support the management and monitoring of the most vulnerable vegetation areas in the state of Espírito Santo.A Mata Atlântica, um bioma de notável biodiversidade, enfrenta desafios de conservação devido à intensa pressão antrópica que se refere na perda contínua de áreas florestais. Com o objetivo de analisar as áreas mais suscetíveis à vulnerabilidade ambiental da vegetação no bioma Mata Atlântica do Espírito Santo, foram selecionadas dez variáveis, divididas em duas categorias: ambientais e antrópicas, para os anos de 2012 e 2022. Utilizaram-se dados do MapBiomas para Uso e Cobertura da Terra (UCT), Qualidade de Pastagem e Cicatrizes de Fogo, e do Sistema Integrado de Bases Geoespaciais do estado do Espírito Santo (GEOBASES) para a Proximidade de Estradas. Aplicou-se a inferência Fuzzy na elaboração do mapa de vulnerabilidade ambiental, com cinco classes: Muito Alta, Alta, Moderada, Baixa e Muito Baixa. Posteriormente, confrontou-se o mapa de vulnerabilidade ambiental com as fitofisionomias do bioma Mata Atlântica, obtidas do Instituto Estadual de Meio Ambiente e Recursos Hídricos (IEMA). Nos anos analisados, a classe Pastagem foi a mais representativa em área de UCT, com uma redução de área de 2012 (21.740,78 km²) para 2022 (19.752,54 km²) o que se reflete na redução de área das categorias de Pastagem Severamente Degradada (970,492 km²), Moderadamente Degradada (96,092 km²) e Pastagem sem sinais de Degradação (921,65 km²). Em 2022, a área com vulnerabilidade ambiental Muita Alta reduziu, em relação ao ano de 2012. Tal redução foi menos acentuada na área ocupada pela fitofisionomia de Floresta Estacional Semidecidual (redução de 0,39 km²). Os resultados demonstraram a aplicação das geotecnologias e lógica fuzzy como ferramentas estratégicas na análise espacial e geração de dados ambientais. A integração dessas técnicas possibilitou a análise das classes de vulnerabilidade ambiental com base nas variáveis estabelecidas, que podem servir de apoio à gestão e ao monitoramento de áreas de vegetação mais vulneráveis no estado do Espírito Santo.CAPESTexthttp://repositorio.ufes.br/handle/10/17454porUniversidade Federal do Espírito SantoMestrado em Ciências FlorestaisPrograma de Pós-Graduação em Ciências FlorestaisUFESBRCentro de Ciências Agrárias e Engenhariassubject.br-rjbnÁrea(s) do conhecimento do documento (Tabela CNPq)Inteligência artificialconservação da naturezaFloresta AtlânticaLógica Fuzzy Aplicada Na Avaliação Da Vulnerabilidade Ambiental Da Vegetação No Bioma Mata Atlântica, Estado Do Espírito Santo, Brasiltitle.alternativeinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)instname:Universidade Federal do Espírito Santo (UFES)instacron:UFESemail@ufes.brORIGINALElainecordeirodosSantos-2024-dissertacao.pdfElainecordeirodosSantos-2024-dissertacao.pdfapplication/pdf4788106http://repositorio.ufes.br/bitstreams/2b2c4eeb-8641-4905-8209-5d129f976c22/download5a19a26d76c8df9570d83eba893d9961MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufes.br/bitstreams/30897552-2528-4baf-8560-c58d8c981319/download8a4605be74aa9ea9d79846c1fba20a33MD5210/174542024-08-29 11:24:59.127oai:repositorio.ufes.br:10/17454http://repositorio.ufes.brRepositório InstitucionalPUBhttp://repositorio.ufes.br/oai/requestopendoar:21082024-10-15T17:51:33.501282Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)falseTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
dc.title.none.fl_str_mv Lógica Fuzzy Aplicada Na Avaliação Da Vulnerabilidade Ambiental Da Vegetação No Bioma Mata Atlântica, Estado Do Espírito Santo, Brasil
dc.title.alternative.none.fl_str_mv title.alternative
title Lógica Fuzzy Aplicada Na Avaliação Da Vulnerabilidade Ambiental Da Vegetação No Bioma Mata Atlântica, Estado Do Espírito Santo, Brasil
spellingShingle Lógica Fuzzy Aplicada Na Avaliação Da Vulnerabilidade Ambiental Da Vegetação No Bioma Mata Atlântica, Estado Do Espírito Santo, Brasil
Santos, Elaine Cordeiro dos
Área(s) do conhecimento do documento (Tabela CNPq)
Inteligência artificial
conservação da natureza
Floresta Atlântica
subject.br-rjbn
title_short Lógica Fuzzy Aplicada Na Avaliação Da Vulnerabilidade Ambiental Da Vegetação No Bioma Mata Atlântica, Estado Do Espírito Santo, Brasil
title_full Lógica Fuzzy Aplicada Na Avaliação Da Vulnerabilidade Ambiental Da Vegetação No Bioma Mata Atlântica, Estado Do Espírito Santo, Brasil
title_fullStr Lógica Fuzzy Aplicada Na Avaliação Da Vulnerabilidade Ambiental Da Vegetação No Bioma Mata Atlântica, Estado Do Espírito Santo, Brasil
title_full_unstemmed Lógica Fuzzy Aplicada Na Avaliação Da Vulnerabilidade Ambiental Da Vegetação No Bioma Mata Atlântica, Estado Do Espírito Santo, Brasil
title_sort Lógica Fuzzy Aplicada Na Avaliação Da Vulnerabilidade Ambiental Da Vegetação No Bioma Mata Atlântica, Estado Do Espírito Santo, Brasil
author Santos, Elaine Cordeiro dos
author_facet Santos, Elaine Cordeiro dos
author_role author
dc.contributor.authorID.none.fl_str_mv https://orcid.org/0000-0003-4502-6055
dc.contributor.authorLattes.none.fl_str_mv http://lattes.cnpq.br/9270550795921337
dc.contributor.advisor-co1.fl_str_mv Moreira, Taís Rizzo
dc.contributor.advisor-co1ID.fl_str_mv https://orcid.org/0000-0001-5536-6286
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/6717864186103246
dc.contributor.advisor1.fl_str_mv Santos, Alexandre Rosa dos
dc.contributor.advisor1ID.fl_str_mv https://orcid.org/0000-0003-2617-9451
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/7125826645310758
dc.contributor.author.fl_str_mv Santos, Elaine Cordeiro dos
dc.contributor.referee1.fl_str_mv Andrade, Rosane Gomes da Silva
dc.contributor.referee1ID.fl_str_mv https://orcid.org/0000-0002-2469-0662
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/6872836789433835
dc.contributor.referee2.fl_str_mv Ferrari, Jéferson Luiz
dc.contributor.referee2ID.fl_str_mv https://orcid.org/0000-0001-5663-6428
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/5213847780149836
dc.contributor.referee3.fl_str_mv Silva, Jeferson Pereira Martins
dc.contributor.referee3ID.fl_str_mv https://orcid.org/0000-0003-1552-1127
dc.contributor.referee3Lattes.fl_str_mv http://lattes.cnpq.br/6748966859692740
dc.contributor.referee4.fl_str_mv Santos, Alexandre Rosa dos
dc.contributor.referee4ID.fl_str_mv https://orcid.org/0000-0003-2617-9451
dc.contributor.referee4Lattes.fl_str_mv http://lattes.cnpq.br/7125826645310758
contributor_str_mv Moreira, Taís Rizzo
Santos, Alexandre Rosa dos
Andrade, Rosane Gomes da Silva
Ferrari, Jéferson Luiz
Silva, Jeferson Pereira Martins
Santos, Alexandre Rosa dos
dc.subject.cnpq.fl_str_mv Área(s) do conhecimento do documento (Tabela CNPq)
topic Área(s) do conhecimento do documento (Tabela CNPq)
Inteligência artificial
conservação da natureza
Floresta Atlântica
subject.br-rjbn
dc.subject.por.fl_str_mv Inteligência artificial
conservação da natureza
Floresta Atlântica
dc.subject.br-rjbn.none.fl_str_mv subject.br-rjbn
description The Atlantic Forest, a biome of remarkable biodiversity, faces conservation challenges due to intense anthropogenic pressure resulting in continuous loss of forest areas. In order to analyze the areas most susceptible to environmental vulnerability of vegetation in the Atlantic Forest biome of Espírito Santo, ten variables were selected, divided into two categories: environmental and anthropogenic, for the years 2012 and 2022. Data from MapBiomas for Land Use and Cover (LUC), Pasture Quality and Fire Scars, and from the Sistema Integrado de Bases Geoespaciais do estado do Espiríto Santo (GEOBASES) for Road Proximity were used. Fuzzy inference was applied in the elaboration of the environmental vulnerability map, with five classes: Very High, High, Moderate, Low, and Very Low. Subsequently, the environmental vulnerability map was compared with the phytophysiognomies of the Atlantic Forest biome, obtained from the Instituto Estadual de Meio Ambiente e Recursos Hídricos (IEMA). In the years analyzed, the Pasture class was the most representative in LUC area, with a reduction in area from 2012 (21,740.78 km²) to 2022 (19,752.54 km²) which is reflected in the reduction of area in the categories of Severely Degraded Pasture (970.492 km²), Moderately Degraded (96.092 km²), and Pasture without signs of Degradation (921.65 km²). In 2022, the area with Very High environmental vulnerability decreased compared to the year 2012. This reduction was less pronounced in the area occupied by the phytophysiognomy of Seasonal Semideciduous Forest (reduction of 0.39 km²). The results demonstrated the application of geotechnologies and fuzzy logic as strategic tools in spatial analysis and environmental data generation. The integration of these techniques enabled the analysis of environmental vulnerability classes based on established variables, which can support the management and monitoring of the most vulnerable vegetation areas in the state of Espírito Santo.
publishDate 2024
dc.date.accessioned.fl_str_mv 2024-06-21T13:10:36Z
dc.date.available.fl_str_mv 2024-06-21T13:10:36Z
dc.date.issued.fl_str_mv 2024-02-22
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufes.br/handle/10/17454
url http://repositorio.ufes.br/handle/10/17454
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv Text
dc.publisher.none.fl_str_mv Universidade Federal do Espírito Santo
Mestrado em Ciências Florestais
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ciências Florestais
dc.publisher.initials.fl_str_mv UFES
dc.publisher.country.fl_str_mv BR
dc.publisher.department.fl_str_mv Centro de Ciências Agrárias e Engenharias
publisher.none.fl_str_mv Universidade Federal do Espírito Santo
Mestrado em Ciências Florestais
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
instname:Universidade Federal do Espírito Santo (UFES)
instacron:UFES
instname_str Universidade Federal do Espírito Santo (UFES)
instacron_str UFES
institution UFES
reponame_str Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
collection Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
bitstream.url.fl_str_mv http://repositorio.ufes.br/bitstreams/2b2c4eeb-8641-4905-8209-5d129f976c22/download
http://repositorio.ufes.br/bitstreams/30897552-2528-4baf-8560-c58d8c981319/download
bitstream.checksum.fl_str_mv 5a19a26d76c8df9570d83eba893d9961
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)
repository.mail.fl_str_mv
_version_ 1813022502149947392