Bases gaussianas geradas com os métodos Monte Carlo Simulated Annealing e Particle Swarm Optimization.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
Texto Completo: | http://repositorio.ufes.br/handle/10/7378 |
Resumo: | The Monte Carlo Simulated Annealing and Particle Swarm Optimization methods were used to generate adapted Gaussian basis set for the atoms from H to Ar, in the ground state. A study about the e ciency and the reliability of each method was performed. In order to check the reliability of the proposed methods, we perform an speci c study considering a training set of 15 atoms, namely: N, Mg, Al, Cl, T i, N i, Br, Sr, Ru, P d, Sb, Cs, Ir, Tl, At. First of all, the Improved Generator Coordinate Hartree-Fock Method was applied to generate adapted basis which was used as start point to generate new Gaussian basis sets. After that, the Monte Carlo Simulated Annealing and Particle Swarm Optimization methods were developed from parallel studies, however following the same procedure so as we could have the possibility to compare them. Previously applying of the developed methods we perform some calibrations in order to de ne the values of the parameters of the algorithms; we perform studies about annealing schedules (for the Monte Carlo Simulated Annealing method), the total of swarm's particle (for the Particle Swarm Optimization method), and the total of steps for each algorithm. After the calibration procedure, both methods were applied, with the variational principle, to the Hartree-Fock wave function to give us the fully optimized Gaussian basis sets. Next, the basis sets were contracted by considering the lowest total energy loss, prioritizing the contraction of the most internal exponents. The last two steps of our procedure were the addition of polarized and di use functions, respectively. These procedures were performed by using the methods which we developed in this work through calculations to the MP2 level. The basis sets that have been generated in this work were used in some atomic and molecular calculations; we compare such results with relevant results from literature. We veri ed that, if we consider the same computational e ciency for both Monte Carlo Simulated Annealing and Particle Swarm Optimization methods, there is a vi small di erence between them as regards the accuracy, so that by using the Monte Carlo Simulated Annealing method we obtain best results. When we compare the results of this work with those from literature we note similar results for the properties that were studied, however the proposed methods in this work are more e cient, and we can de ne a single total numbers of steps for the algorithms even though we are treating with di erent atomic systems. In addition, we verify that the proposed methods in this work are more accurate than other similar methods presented in the literature, in the task of nding the global minima of the uncontracted basis sets to HF level of theory. It will be necessary to perform additional studies to check the real relationship between the accuracy of the methods. We do not verify the in uence of several parameters of the Particle Swarm Optimization algorithm in this work. The fact that the developed methods in this work have been constructed through Double Zeta basis does not prevent them to be used for larger basis sets, the two methods are able to be applied to generate Gaussian basis sets in the atomic environment for Gaussian basis sets with di erent qualities |
id |
UFES_b222d9753208addb8a1de6daf62ab3ae |
---|---|
oai_identifier_str |
oai:repositorio.ufes.br:10/7378 |
network_acronym_str |
UFES |
network_name_str |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
repository_id_str |
2108 |
spelling |
Alfonso, Jorge Luis GonzalezCaetano, Edson PassamaniReis, Thiago Mello dosContinentino, Mucio AmadoNascimento, Valberto PedruzziMacedo, Waldemar Augusto de Almeida2018-08-01T21:59:48Z2018-08-012018-08-01T21:59:48Z2017-10-03The Monte Carlo Simulated Annealing and Particle Swarm Optimization methods were used to generate adapted Gaussian basis set for the atoms from H to Ar, in the ground state. A study about the e ciency and the reliability of each method was performed. In order to check the reliability of the proposed methods, we perform an speci c study considering a training set of 15 atoms, namely: N, Mg, Al, Cl, T i, N i, Br, Sr, Ru, P d, Sb, Cs, Ir, Tl, At. First of all, the Improved Generator Coordinate Hartree-Fock Method was applied to generate adapted basis which was used as start point to generate new Gaussian basis sets. After that, the Monte Carlo Simulated Annealing and Particle Swarm Optimization methods were developed from parallel studies, however following the same procedure so as we could have the possibility to compare them. Previously applying of the developed methods we perform some calibrations in order to de ne the values of the parameters of the algorithms; we perform studies about annealing schedules (for the Monte Carlo Simulated Annealing method), the total of swarm's particle (for the Particle Swarm Optimization method), and the total of steps for each algorithm. After the calibration procedure, both methods were applied, with the variational principle, to the Hartree-Fock wave function to give us the fully optimized Gaussian basis sets. Next, the basis sets were contracted by considering the lowest total energy loss, prioritizing the contraction of the most internal exponents. The last two steps of our procedure were the addition of polarized and di use functions, respectively. These procedures were performed by using the methods which we developed in this work through calculations to the MP2 level. The basis sets that have been generated in this work were used in some atomic and molecular calculations; we compare such results with relevant results from literature. We veri ed that, if we consider the same computational e ciency for both Monte Carlo Simulated Annealing and Particle Swarm Optimization methods, there is a vi small di erence between them as regards the accuracy, so that by using the Monte Carlo Simulated Annealing method we obtain best results. When we compare the results of this work with those from literature we note similar results for the properties that were studied, however the proposed methods in this work are more e cient, and we can de ne a single total numbers of steps for the algorithms even though we are treating with di erent atomic systems. In addition, we verify that the proposed methods in this work are more accurate than other similar methods presented in the literature, in the task of nding the global minima of the uncontracted basis sets to HF level of theory. It will be necessary to perform additional studies to check the real relationship between the accuracy of the methods. We do not verify the in uence of several parameters of the Particle Swarm Optimization algorithm in this work. The fact that the developed methods in this work have been constructed through Double Zeta basis does not prevent them to be used for larger basis sets, the two methods are able to be applied to generate Gaussian basis sets in the atomic environment for Gaussian basis sets with di erent qualitiesOs métodos Monte Carlo Simulated Annealing e Particle Swarm Optimization foram utilizados na geração de bases Gaussianas adaptadas para os átomos de H ao Ar, no estado fundamental. Um estudo sobre a eficiência e a confiabilidade de cada um dos métodos foi realizado. Para analisar a confiabilidade dos métodos propostos, fez-se um estudo específico envolvendo um conjunto teste de 15 átomos, a saber: N, Mg, Al, Cl, Ti, Ni, Br, Sr, Ru, Pd, Sb, Cs, Ir, Tl, At. Inicialmente, o método Coordenada Geradora Hartree-Fock Melhorado foi aplicado para gerar bases adaptadas usadas como ponto de partida para a geração de novas bases Gaussianas. Posteriormente, os métodos Monte Carlo Simulated Annealing e Particle Swarm Optimization foram desenvolvidos em estudos paralelos, porém seguindo o mesmo procedimento, a fim de termos a possibilidade de compará-los ao final do estudo. Previamente à efetiva aplicação dos métodos desenvolvidos, ambos foram calibrados visando definir os melhores parâmetros para os algoritmos utilizados; estudos sobre esquemas de resfriamento (para o método Monte Carlo Simulated Annealing ) e quantidade de partículas do enxame (para o método Particle Swarm Optimization), além do número total de passos para os algoritmos foram feitos. Após esta etapa de calibração, os dois métodos foram aplicados, juntamente com o princípio variacional, à função de onda Hartree-Fock para a obtenção de bases Gaussianas totalmente otimizadas. Em seguida, as bases foram contraídas tendo-se em vista a menor perda de energia observada, preconizando a contração dos expoentes mais internos. As duas últimas etapas do procedimento da geração das bases foram a inclusão de funções de polarização e funções difusas, respectivamente. Estes procedimentos foram feitos utilizando os métodos desenvolvidos neste trabalho através de cálculos a nível MP2. Os conjuntos de base gerados neste trabalho foram utilizados para cálculos práticos em sistemas atômicos e moleculares e os resultados foram comparados com resultados obtidos a partir de conjuntos de base similares relevantes na literatura. Verificamos que, para um mesmo nível de eficiência computacional entre os métodos Monte Carlo Simulated Annealing e Particle Swarm Optimization, há uma pequena diferença de eficácia entre eles, de modo que o método Monte Carlo Simulated Annealing apresentou resultados ligeiramente melhores para os cálculos performados. Comparando-se os resultados obtidos neste trabalho com os correspondentes encontrados na literatura, observamos valores numericamente comparáveis para as propriedades estudadas, todavia os métodos propostos neste trabalho são siginificativamente mais eficientes, sendo possível o estabelecimento de um único conjunto de passos nos algoritmos para diferentes sistemas atômicos. Ademais, verificamos que a etapa específica, referente a otimização proposta neste trabalho, é eficaz na tarefa de localizar o mínimo global das funções atômicas a nível de teoria HF. Estudos mais detalhados são necessários para constatar a real relação acerca da eficácia observada para os dois métodos propostos neste trabalho. O método Particle Swarm Optimization apresenta uma série de parâmetros que não tiveram sua influência checada neste trabalho. O fato dos métodos desenvolvidos neste trabalho terem sido construídos sobre bases Dupla Zeta não implica em restrição de generalidade, de tal sorte que estes métodos estão prontamente aptos para a aplicação no desenvolvimento de conjuntos de base gaussianas no ambiente atômico para conjuntos de base de qualidade variadas.TextREIS, Thiago Mello dos. Bases gaussianas geradas com os métodos Monte Carlo Simulated Annealing e Particle Swarm Optimization. 2017. Tese (Doutorado em Física) - Programa de Pós-Graduação em Física, Universidade Federal do Espírito Santo, Vitória, 2017.http://repositorio.ufes.br/handle/10/7378porUniversidade Federal do Espírito SantoDoutorado em FísicaPrograma de Pós-Graduação em FísicaUFESBRCentro de Ciências ExatasBases GaussianasMétodo Monte CarloÁtomosFísica53Bases gaussianas geradas com os métodos Monte Carlo Simulated Annealing e Particle Swarm Optimization.info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)instname:Universidade Federal do Espírito Santo (UFES)instacron:UFESORIGINALThiago Mello dos Reis.pdfapplication/pdf2877793http://repositorio.ufes.br/bitstreams/d3bbd303-58dc-4be0-ab9b-5bdece8e4024/downloada65224aac4b723bdea3543cb8bc010e4MD5110/73782024-06-28 18:06:29.461oai:repositorio.ufes.br:10/7378http://repositorio.ufes.brRepositório InstitucionalPUBhttp://repositorio.ufes.br/oai/requestopendoar:21082024-07-11T14:30:28.578806Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)false |
dc.title.none.fl_str_mv |
Bases gaussianas geradas com os métodos Monte Carlo Simulated Annealing e Particle Swarm Optimization. |
title |
Bases gaussianas geradas com os métodos Monte Carlo Simulated Annealing e Particle Swarm Optimization. |
spellingShingle |
Bases gaussianas geradas com os métodos Monte Carlo Simulated Annealing e Particle Swarm Optimization. Reis, Thiago Mello dos Bases Gaussianas Método Monte Carlo Átomos Física 53 |
title_short |
Bases gaussianas geradas com os métodos Monte Carlo Simulated Annealing e Particle Swarm Optimization. |
title_full |
Bases gaussianas geradas com os métodos Monte Carlo Simulated Annealing e Particle Swarm Optimization. |
title_fullStr |
Bases gaussianas geradas com os métodos Monte Carlo Simulated Annealing e Particle Swarm Optimization. |
title_full_unstemmed |
Bases gaussianas geradas com os métodos Monte Carlo Simulated Annealing e Particle Swarm Optimization. |
title_sort |
Bases gaussianas geradas com os métodos Monte Carlo Simulated Annealing e Particle Swarm Optimization. |
author |
Reis, Thiago Mello dos |
author_facet |
Reis, Thiago Mello dos |
author_role |
author |
dc.contributor.advisor-co1.fl_str_mv |
Alfonso, Jorge Luis Gonzalez |
dc.contributor.advisor1.fl_str_mv |
Caetano, Edson Passamani |
dc.contributor.author.fl_str_mv |
Reis, Thiago Mello dos |
dc.contributor.referee1.fl_str_mv |
Continentino, Mucio Amado |
dc.contributor.referee2.fl_str_mv |
Nascimento, Valberto Pedruzzi |
dc.contributor.referee3.fl_str_mv |
Macedo, Waldemar Augusto de Almeida |
contributor_str_mv |
Alfonso, Jorge Luis Gonzalez Caetano, Edson Passamani Continentino, Mucio Amado Nascimento, Valberto Pedruzzi Macedo, Waldemar Augusto de Almeida |
dc.subject.por.fl_str_mv |
Bases Gaussianas Método Monte Carlo Átomos |
topic |
Bases Gaussianas Método Monte Carlo Átomos Física 53 |
dc.subject.cnpq.fl_str_mv |
Física |
dc.subject.udc.none.fl_str_mv |
53 |
description |
The Monte Carlo Simulated Annealing and Particle Swarm Optimization methods were used to generate adapted Gaussian basis set for the atoms from H to Ar, in the ground state. A study about the e ciency and the reliability of each method was performed. In order to check the reliability of the proposed methods, we perform an speci c study considering a training set of 15 atoms, namely: N, Mg, Al, Cl, T i, N i, Br, Sr, Ru, P d, Sb, Cs, Ir, Tl, At. First of all, the Improved Generator Coordinate Hartree-Fock Method was applied to generate adapted basis which was used as start point to generate new Gaussian basis sets. After that, the Monte Carlo Simulated Annealing and Particle Swarm Optimization methods were developed from parallel studies, however following the same procedure so as we could have the possibility to compare them. Previously applying of the developed methods we perform some calibrations in order to de ne the values of the parameters of the algorithms; we perform studies about annealing schedules (for the Monte Carlo Simulated Annealing method), the total of swarm's particle (for the Particle Swarm Optimization method), and the total of steps for each algorithm. After the calibration procedure, both methods were applied, with the variational principle, to the Hartree-Fock wave function to give us the fully optimized Gaussian basis sets. Next, the basis sets were contracted by considering the lowest total energy loss, prioritizing the contraction of the most internal exponents. The last two steps of our procedure were the addition of polarized and di use functions, respectively. These procedures were performed by using the methods which we developed in this work through calculations to the MP2 level. The basis sets that have been generated in this work were used in some atomic and molecular calculations; we compare such results with relevant results from literature. We veri ed that, if we consider the same computational e ciency for both Monte Carlo Simulated Annealing and Particle Swarm Optimization methods, there is a vi small di erence between them as regards the accuracy, so that by using the Monte Carlo Simulated Annealing method we obtain best results. When we compare the results of this work with those from literature we note similar results for the properties that were studied, however the proposed methods in this work are more e cient, and we can de ne a single total numbers of steps for the algorithms even though we are treating with di erent atomic systems. In addition, we verify that the proposed methods in this work are more accurate than other similar methods presented in the literature, in the task of nding the global minima of the uncontracted basis sets to HF level of theory. It will be necessary to perform additional studies to check the real relationship between the accuracy of the methods. We do not verify the in uence of several parameters of the Particle Swarm Optimization algorithm in this work. The fact that the developed methods in this work have been constructed through Double Zeta basis does not prevent them to be used for larger basis sets, the two methods are able to be applied to generate Gaussian basis sets in the atomic environment for Gaussian basis sets with di erent qualities |
publishDate |
2017 |
dc.date.issued.fl_str_mv |
2017-10-03 |
dc.date.accessioned.fl_str_mv |
2018-08-01T21:59:48Z |
dc.date.available.fl_str_mv |
2018-08-01 2018-08-01T21:59:48Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
REIS, Thiago Mello dos. Bases gaussianas geradas com os métodos Monte Carlo Simulated Annealing e Particle Swarm Optimization. 2017. Tese (Doutorado em Física) - Programa de Pós-Graduação em Física, Universidade Federal do Espírito Santo, Vitória, 2017. |
dc.identifier.uri.fl_str_mv |
http://repositorio.ufes.br/handle/10/7378 |
identifier_str_mv |
REIS, Thiago Mello dos. Bases gaussianas geradas com os métodos Monte Carlo Simulated Annealing e Particle Swarm Optimization. 2017. Tese (Doutorado em Física) - Programa de Pós-Graduação em Física, Universidade Federal do Espírito Santo, Vitória, 2017. |
url |
http://repositorio.ufes.br/handle/10/7378 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
Text |
dc.publisher.none.fl_str_mv |
Universidade Federal do Espírito Santo Doutorado em Física |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Física |
dc.publisher.initials.fl_str_mv |
UFES |
dc.publisher.country.fl_str_mv |
BR |
dc.publisher.department.fl_str_mv |
Centro de Ciências Exatas |
publisher.none.fl_str_mv |
Universidade Federal do Espírito Santo Doutorado em Física |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) instname:Universidade Federal do Espírito Santo (UFES) instacron:UFES |
instname_str |
Universidade Federal do Espírito Santo (UFES) |
instacron_str |
UFES |
institution |
UFES |
reponame_str |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
collection |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
bitstream.url.fl_str_mv |
http://repositorio.ufes.br/bitstreams/d3bbd303-58dc-4be0-ab9b-5bdece8e4024/download |
bitstream.checksum.fl_str_mv |
a65224aac4b723bdea3543cb8bc010e4 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES) |
repository.mail.fl_str_mv |
|
_version_ |
1813022601627303936 |