Bases gaussianas geradas com os métodos Monte Carlo Simulated Annealing e Particle Swarm Optimization.

Detalhes bibliográficos
Autor(a) principal: Reis, Thiago Mello dos
Data de Publicação: 2017
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
Texto Completo: http://repositorio.ufes.br/handle/10/7378
Resumo: The Monte Carlo Simulated Annealing and Particle Swarm Optimization methods were used to generate adapted Gaussian basis set for the atoms from H to Ar, in the ground state. A study about the e ciency and the reliability of each method was performed. In order to check the reliability of the proposed methods, we perform an speci c study considering a training set of 15 atoms, namely: N, Mg, Al, Cl, T i, N i, Br, Sr, Ru, P d, Sb, Cs, Ir, Tl, At. First of all, the Improved Generator Coordinate Hartree-Fock Method was applied to generate adapted basis which was used as start point to generate new Gaussian basis sets. After that, the Monte Carlo Simulated Annealing and Particle Swarm Optimization methods were developed from parallel studies, however following the same procedure so as we could have the possibility to compare them. Previously applying of the developed methods we perform some calibrations in order to de ne the values of the parameters of the algorithms; we perform studies about annealing schedules (for the Monte Carlo Simulated Annealing method), the total of swarm's particle (for the Particle Swarm Optimization method), and the total of steps for each algorithm. After the calibration procedure, both methods were applied, with the variational principle, to the Hartree-Fock wave function to give us the fully optimized Gaussian basis sets. Next, the basis sets were contracted by considering the lowest total energy loss, prioritizing the contraction of the most internal exponents. The last two steps of our procedure were the addition of polarized and di use functions, respectively. These procedures were performed by using the methods which we developed in this work through calculations to the MP2 level. The basis sets that have been generated in this work were used in some atomic and molecular calculations; we compare such results with relevant results from literature. We veri ed that, if we consider the same computational e ciency for both Monte Carlo Simulated Annealing and Particle Swarm Optimization methods, there is a vi small di erence between them as regards the accuracy, so that by using the Monte Carlo Simulated Annealing method we obtain best results. When we compare the results of this work with those from literature we note similar results for the properties that were studied, however the proposed methods in this work are more e cient, and we can de ne a single total numbers of steps for the algorithms even though we are treating with di erent atomic systems. In addition, we verify that the proposed methods in this work are more accurate than other similar methods presented in the literature, in the task of nding the global minima of the uncontracted basis sets to HF level of theory. It will be necessary to perform additional studies to check the real relationship between the accuracy of the methods. We do not verify the in uence of several parameters of the Particle Swarm Optimization algorithm in this work. The fact that the developed methods in this work have been constructed through Double Zeta basis does not prevent them to be used for larger basis sets, the two methods are able to be applied to generate Gaussian basis sets in the atomic environment for Gaussian basis sets with di erent qualities
id UFES_b222d9753208addb8a1de6daf62ab3ae
oai_identifier_str oai:repositorio.ufes.br:10/7378
network_acronym_str UFES
network_name_str Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
repository_id_str 2108
spelling Alfonso, Jorge Luis GonzalezCaetano, Edson PassamaniReis, Thiago Mello dosContinentino, Mucio AmadoNascimento, Valberto PedruzziMacedo, Waldemar Augusto de Almeida2018-08-01T21:59:48Z2018-08-012018-08-01T21:59:48Z2017-10-03The Monte Carlo Simulated Annealing and Particle Swarm Optimization methods were used to generate adapted Gaussian basis set for the atoms from H to Ar, in the ground state. A study about the e ciency and the reliability of each method was performed. In order to check the reliability of the proposed methods, we perform an speci c study considering a training set of 15 atoms, namely: N, Mg, Al, Cl, T i, N i, Br, Sr, Ru, P d, Sb, Cs, Ir, Tl, At. First of all, the Improved Generator Coordinate Hartree-Fock Method was applied to generate adapted basis which was used as start point to generate new Gaussian basis sets. After that, the Monte Carlo Simulated Annealing and Particle Swarm Optimization methods were developed from parallel studies, however following the same procedure so as we could have the possibility to compare them. Previously applying of the developed methods we perform some calibrations in order to de ne the values of the parameters of the algorithms; we perform studies about annealing schedules (for the Monte Carlo Simulated Annealing method), the total of swarm's particle (for the Particle Swarm Optimization method), and the total of steps for each algorithm. After the calibration procedure, both methods were applied, with the variational principle, to the Hartree-Fock wave function to give us the fully optimized Gaussian basis sets. Next, the basis sets were contracted by considering the lowest total energy loss, prioritizing the contraction of the most internal exponents. The last two steps of our procedure were the addition of polarized and di use functions, respectively. These procedures were performed by using the methods which we developed in this work through calculations to the MP2 level. The basis sets that have been generated in this work were used in some atomic and molecular calculations; we compare such results with relevant results from literature. We veri ed that, if we consider the same computational e ciency for both Monte Carlo Simulated Annealing and Particle Swarm Optimization methods, there is a vi small di erence between them as regards the accuracy, so that by using the Monte Carlo Simulated Annealing method we obtain best results. When we compare the results of this work with those from literature we note similar results for the properties that were studied, however the proposed methods in this work are more e cient, and we can de ne a single total numbers of steps for the algorithms even though we are treating with di erent atomic systems. In addition, we verify that the proposed methods in this work are more accurate than other similar methods presented in the literature, in the task of nding the global minima of the uncontracted basis sets to HF level of theory. It will be necessary to perform additional studies to check the real relationship between the accuracy of the methods. We do not verify the in uence of several parameters of the Particle Swarm Optimization algorithm in this work. The fact that the developed methods in this work have been constructed through Double Zeta basis does not prevent them to be used for larger basis sets, the two methods are able to be applied to generate Gaussian basis sets in the atomic environment for Gaussian basis sets with di erent qualitiesOs métodos Monte Carlo Simulated Annealing e Particle Swarm Optimization foram utilizados na geração de bases Gaussianas adaptadas para os átomos de H ao Ar, no estado fundamental. Um estudo sobre a eficiência e a confiabilidade de cada um dos métodos foi realizado. Para analisar a confiabilidade dos métodos propostos, fez-se um estudo específico envolvendo um conjunto teste de 15 átomos, a saber: N, Mg, Al, Cl, Ti, Ni, Br, Sr, Ru, Pd, Sb, Cs, Ir, Tl, At. Inicialmente, o método Coordenada Geradora Hartree-Fock Melhorado foi aplicado para gerar bases adaptadas usadas como ponto de partida para a geração de novas bases Gaussianas. Posteriormente, os métodos Monte Carlo Simulated Annealing e Particle Swarm Optimization foram desenvolvidos em estudos paralelos, porém seguindo o mesmo procedimento, a fim de termos a possibilidade de compará-los ao final do estudo. Previamente à efetiva aplicação dos métodos desenvolvidos, ambos foram calibrados visando definir os melhores parâmetros para os algoritmos utilizados; estudos sobre esquemas de resfriamento (para o método Monte Carlo Simulated Annealing ) e quantidade de partículas do enxame (para o método Particle Swarm Optimization), além do número total de passos para os algoritmos foram feitos. Após esta etapa de calibração, os dois métodos foram aplicados, juntamente com o princípio variacional, à função de onda Hartree-Fock para a obtenção de bases Gaussianas totalmente otimizadas. Em seguida, as bases foram contraídas tendo-se em vista a menor perda de energia observada, preconizando a contração dos expoentes mais internos. As duas últimas etapas do procedimento da geração das bases foram a inclusão de funções de polarização e funções difusas, respectivamente. Estes procedimentos foram feitos utilizando os métodos desenvolvidos neste trabalho através de cálculos a nível MP2. Os conjuntos de base gerados neste trabalho foram utilizados para cálculos práticos em sistemas atômicos e moleculares e os resultados foram comparados com resultados obtidos a partir de conjuntos de base similares relevantes na literatura. Verificamos que, para um mesmo nível de eficiência computacional entre os métodos Monte Carlo Simulated Annealing e Particle Swarm Optimization, há uma pequena diferença de eficácia entre eles, de modo que o método Monte Carlo Simulated Annealing apresentou resultados ligeiramente melhores para os cálculos performados. Comparando-se os resultados obtidos neste trabalho com os correspondentes encontrados na literatura, observamos valores numericamente comparáveis para as propriedades estudadas, todavia os métodos propostos neste trabalho são siginificativamente mais eficientes, sendo possível o estabelecimento de um único conjunto de passos nos algoritmos para diferentes sistemas atômicos. Ademais, verificamos que a etapa específica, referente a otimização proposta neste trabalho, é eficaz na tarefa de localizar o mínimo global das funções atômicas a nível de teoria HF. Estudos mais detalhados são necessários para constatar a real relação acerca da eficácia observada para os dois métodos propostos neste trabalho. O método Particle Swarm Optimization apresenta uma série de parâmetros que não tiveram sua influência checada neste trabalho. O fato dos métodos desenvolvidos neste trabalho terem sido construídos sobre bases Dupla Zeta não implica em restrição de generalidade, de tal sorte que estes métodos estão prontamente aptos para a aplicação no desenvolvimento de conjuntos de base gaussianas no ambiente atômico para conjuntos de base de qualidade variadas.TextREIS, Thiago Mello dos. Bases gaussianas geradas com os métodos Monte Carlo Simulated Annealing e Particle Swarm Optimization. 2017. Tese (Doutorado em Física) - Programa de Pós-Graduação em Física, Universidade Federal do Espírito Santo, Vitória, 2017.http://repositorio.ufes.br/handle/10/7378porUniversidade Federal do Espírito SantoDoutorado em FísicaPrograma de Pós-Graduação em FísicaUFESBRCentro de Ciências ExatasBases GaussianasMétodo Monte CarloÁtomosFísica53Bases gaussianas geradas com os métodos Monte Carlo Simulated Annealing e Particle Swarm Optimization.info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)instname:Universidade Federal do Espírito Santo (UFES)instacron:UFESORIGINALThiago Mello dos Reis.pdfapplication/pdf2877793http://repositorio.ufes.br/bitstreams/d3bbd303-58dc-4be0-ab9b-5bdece8e4024/downloada65224aac4b723bdea3543cb8bc010e4MD5110/73782024-06-28 18:06:29.461oai:repositorio.ufes.br:10/7378http://repositorio.ufes.brRepositório InstitucionalPUBhttp://repositorio.ufes.br/oai/requestopendoar:21082024-07-11T14:30:28.578806Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)false
dc.title.none.fl_str_mv Bases gaussianas geradas com os métodos Monte Carlo Simulated Annealing e Particle Swarm Optimization.
title Bases gaussianas geradas com os métodos Monte Carlo Simulated Annealing e Particle Swarm Optimization.
spellingShingle Bases gaussianas geradas com os métodos Monte Carlo Simulated Annealing e Particle Swarm Optimization.
Reis, Thiago Mello dos
Bases Gaussianas
Método Monte Carlo
Átomos
Física
53
title_short Bases gaussianas geradas com os métodos Monte Carlo Simulated Annealing e Particle Swarm Optimization.
title_full Bases gaussianas geradas com os métodos Monte Carlo Simulated Annealing e Particle Swarm Optimization.
title_fullStr Bases gaussianas geradas com os métodos Monte Carlo Simulated Annealing e Particle Swarm Optimization.
title_full_unstemmed Bases gaussianas geradas com os métodos Monte Carlo Simulated Annealing e Particle Swarm Optimization.
title_sort Bases gaussianas geradas com os métodos Monte Carlo Simulated Annealing e Particle Swarm Optimization.
author Reis, Thiago Mello dos
author_facet Reis, Thiago Mello dos
author_role author
dc.contributor.advisor-co1.fl_str_mv Alfonso, Jorge Luis Gonzalez
dc.contributor.advisor1.fl_str_mv Caetano, Edson Passamani
dc.contributor.author.fl_str_mv Reis, Thiago Mello dos
dc.contributor.referee1.fl_str_mv Continentino, Mucio Amado
dc.contributor.referee2.fl_str_mv Nascimento, Valberto Pedruzzi
dc.contributor.referee3.fl_str_mv Macedo, Waldemar Augusto de Almeida
contributor_str_mv Alfonso, Jorge Luis Gonzalez
Caetano, Edson Passamani
Continentino, Mucio Amado
Nascimento, Valberto Pedruzzi
Macedo, Waldemar Augusto de Almeida
dc.subject.por.fl_str_mv Bases Gaussianas
Método Monte Carlo
Átomos
topic Bases Gaussianas
Método Monte Carlo
Átomos
Física
53
dc.subject.cnpq.fl_str_mv Física
dc.subject.udc.none.fl_str_mv 53
description The Monte Carlo Simulated Annealing and Particle Swarm Optimization methods were used to generate adapted Gaussian basis set for the atoms from H to Ar, in the ground state. A study about the e ciency and the reliability of each method was performed. In order to check the reliability of the proposed methods, we perform an speci c study considering a training set of 15 atoms, namely: N, Mg, Al, Cl, T i, N i, Br, Sr, Ru, P d, Sb, Cs, Ir, Tl, At. First of all, the Improved Generator Coordinate Hartree-Fock Method was applied to generate adapted basis which was used as start point to generate new Gaussian basis sets. After that, the Monte Carlo Simulated Annealing and Particle Swarm Optimization methods were developed from parallel studies, however following the same procedure so as we could have the possibility to compare them. Previously applying of the developed methods we perform some calibrations in order to de ne the values of the parameters of the algorithms; we perform studies about annealing schedules (for the Monte Carlo Simulated Annealing method), the total of swarm's particle (for the Particle Swarm Optimization method), and the total of steps for each algorithm. After the calibration procedure, both methods were applied, with the variational principle, to the Hartree-Fock wave function to give us the fully optimized Gaussian basis sets. Next, the basis sets were contracted by considering the lowest total energy loss, prioritizing the contraction of the most internal exponents. The last two steps of our procedure were the addition of polarized and di use functions, respectively. These procedures were performed by using the methods which we developed in this work through calculations to the MP2 level. The basis sets that have been generated in this work were used in some atomic and molecular calculations; we compare such results with relevant results from literature. We veri ed that, if we consider the same computational e ciency for both Monte Carlo Simulated Annealing and Particle Swarm Optimization methods, there is a vi small di erence between them as regards the accuracy, so that by using the Monte Carlo Simulated Annealing method we obtain best results. When we compare the results of this work with those from literature we note similar results for the properties that were studied, however the proposed methods in this work are more e cient, and we can de ne a single total numbers of steps for the algorithms even though we are treating with di erent atomic systems. In addition, we verify that the proposed methods in this work are more accurate than other similar methods presented in the literature, in the task of nding the global minima of the uncontracted basis sets to HF level of theory. It will be necessary to perform additional studies to check the real relationship between the accuracy of the methods. We do not verify the in uence of several parameters of the Particle Swarm Optimization algorithm in this work. The fact that the developed methods in this work have been constructed through Double Zeta basis does not prevent them to be used for larger basis sets, the two methods are able to be applied to generate Gaussian basis sets in the atomic environment for Gaussian basis sets with di erent qualities
publishDate 2017
dc.date.issued.fl_str_mv 2017-10-03
dc.date.accessioned.fl_str_mv 2018-08-01T21:59:48Z
dc.date.available.fl_str_mv 2018-08-01
2018-08-01T21:59:48Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv REIS, Thiago Mello dos. Bases gaussianas geradas com os métodos Monte Carlo Simulated Annealing e Particle Swarm Optimization. 2017. Tese (Doutorado em Física) - Programa de Pós-Graduação em Física, Universidade Federal do Espírito Santo, Vitória, 2017.
dc.identifier.uri.fl_str_mv http://repositorio.ufes.br/handle/10/7378
identifier_str_mv REIS, Thiago Mello dos. Bases gaussianas geradas com os métodos Monte Carlo Simulated Annealing e Particle Swarm Optimization. 2017. Tese (Doutorado em Física) - Programa de Pós-Graduação em Física, Universidade Federal do Espírito Santo, Vitória, 2017.
url http://repositorio.ufes.br/handle/10/7378
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv Text
dc.publisher.none.fl_str_mv Universidade Federal do Espírito Santo
Doutorado em Física
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Física
dc.publisher.initials.fl_str_mv UFES
dc.publisher.country.fl_str_mv BR
dc.publisher.department.fl_str_mv Centro de Ciências Exatas
publisher.none.fl_str_mv Universidade Federal do Espírito Santo
Doutorado em Física
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
instname:Universidade Federal do Espírito Santo (UFES)
instacron:UFES
instname_str Universidade Federal do Espírito Santo (UFES)
instacron_str UFES
institution UFES
reponame_str Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
collection Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
bitstream.url.fl_str_mv http://repositorio.ufes.br/bitstreams/d3bbd303-58dc-4be0-ab9b-5bdece8e4024/download
bitstream.checksum.fl_str_mv a65224aac4b723bdea3543cb8bc010e4
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)
repository.mail.fl_str_mv
_version_ 1813022601627303936