Ocorrências de seca e tendências da vegetação na reserva biológica de Sooretama e zona de amortecimento, no estado do Espírito Santo, Brasil
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
Texto Completo: | http://repositorio.ufes.br/handle/10/7691 |
Resumo: | The application of remote sensing techniques in time series have become a strong tool that have been highlighted in the scientific community by allow rapid and low cost evaluation, within an accuracy margin. Thus, the frequent recording of images by satellite sensors covering large areas of the Earth surface allows the construction and analysis of time series of vegetation data of different physiognomy, assisting in the dynamic study of vegetation and the spatial arrangement of different intensities drought event. The current study aimed to analyze drought occurrences and time spatial trends in vegetation and to link them to climate change from 2007 to 2015 in the Sooretama biological reserve and surroundings. For this, were used NDVI, EVI and LST images of MODIS sensor to time-spatial analysis of droughts, was used the Vegetation Condition Index (VCI). Was calculated the Pearson's correlation between the mean values of vegetation index and climate variables in order to determine the most appropriate index for the study area and subsequent employment in the drought index VCI, used for monitoring drought. The drought occurrence images and graphics in severe and extreme classes were compared with the rainfall accumulated and its anomaly and water deficit accumulated and the anomaly for each season. In addition, was obtained the average, maximum and minimum values of VCI and related to the average, maximum and minimum values of LST through graphical analysis and regression. Then, was calculated the LST anomaly and crossed with the seasons that had higher drought extensions of greater severity. The analysis of the inter-annual trends of the time series of vegetation indexes were made through Mann-Kendal monotonic trend and seasonal trends analysis methodologies. The images were imported in .img format of TerrSet software, in wich was used the Earth Trends modeler module (ETM) for the trends analysis and processing of the behavior of vegetation indexes. It was created a time series file for each group of images, NDVI, EVI, in which each series consists of a pair of files: A scan file containing the time series images, in .rgf format and a documentation file that describes the temporal characteristics of the series in .tsf format. The results indicates that the EVI index of MODIS sensor showed higher significant correlations with the meteorological variables and great potential for drought occurrences analysis to regions with high density of biomass as native forests. In the years 2007, 2013 and 2015 occurred extreme and severe order drought in larger extensions compared to the other years. The VCI Index its presented suitable for drought occurrences monitoring in the study area, with temporal and spatial concordance with environmental variables and occurrences of El Niño. Over the period analyzed, it was found that there where a decrease of biomass observed in both vegetation indexes through of the negative trends observed in images time series, being more evident in the EVI. The natural forest areas showed the greatest decrease in vegetative vigor observed in the significance images. The annual average values of EVI and NDVI and its decrease over the years showed agreement with the rainfall decreasing and water stress increasing. The data obtained from the MODIS sensor, NDVI, EVI and LST, proved suitable to temporal-spatio analysis of drought occurrences and vegetation trends of the study area. |
id |
UFES_b8f5d53531d1ebe74ff37412f2bee863 |
---|---|
oai_identifier_str |
oai:repositorio.ufes.br:10/7691 |
network_acronym_str |
UFES |
network_name_str |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
repository_id_str |
2108 |
spelling |
Pezzopane, José Eduardo MacedoSantos, Alexandre Rosa dosBranco, Elvis Ricardo FigueiraAlexandre, Rodrigo SobreiraSantos, Aureo Banhos dos2018-08-01T22:35:55Z2018-08-012018-08-01T22:35:55Z2016-07-08The application of remote sensing techniques in time series have become a strong tool that have been highlighted in the scientific community by allow rapid and low cost evaluation, within an accuracy margin. Thus, the frequent recording of images by satellite sensors covering large areas of the Earth surface allows the construction and analysis of time series of vegetation data of different physiognomy, assisting in the dynamic study of vegetation and the spatial arrangement of different intensities drought event. The current study aimed to analyze drought occurrences and time spatial trends in vegetation and to link them to climate change from 2007 to 2015 in the Sooretama biological reserve and surroundings. For this, were used NDVI, EVI and LST images of MODIS sensor to time-spatial analysis of droughts, was used the Vegetation Condition Index (VCI). Was calculated the Pearson's correlation between the mean values of vegetation index and climate variables in order to determine the most appropriate index for the study area and subsequent employment in the drought index VCI, used for monitoring drought. The drought occurrence images and graphics in severe and extreme classes were compared with the rainfall accumulated and its anomaly and water deficit accumulated and the anomaly for each season. In addition, was obtained the average, maximum and minimum values of VCI and related to the average, maximum and minimum values of LST through graphical analysis and regression. Then, was calculated the LST anomaly and crossed with the seasons that had higher drought extensions of greater severity. The analysis of the inter-annual trends of the time series of vegetation indexes were made through Mann-Kendal monotonic trend and seasonal trends analysis methodologies. The images were imported in .img format of TerrSet software, in wich was used the Earth Trends modeler module (ETM) for the trends analysis and processing of the behavior of vegetation indexes. It was created a time series file for each group of images, NDVI, EVI, in which each series consists of a pair of files: A scan file containing the time series images, in .rgf format and a documentation file that describes the temporal characteristics of the series in .tsf format. The results indicates that the EVI index of MODIS sensor showed higher significant correlations with the meteorological variables and great potential for drought occurrences analysis to regions with high density of biomass as native forests. In the years 2007, 2013 and 2015 occurred extreme and severe order drought in larger extensions compared to the other years. The VCI Index its presented suitable for drought occurrences monitoring in the study area, with temporal and spatial concordance with environmental variables and occurrences of El Niño. Over the period analyzed, it was found that there where a decrease of biomass observed in both vegetation indexes through of the negative trends observed in images time series, being more evident in the EVI. The natural forest areas showed the greatest decrease in vegetative vigor observed in the significance images. The annual average values of EVI and NDVI and its decrease over the years showed agreement with the rainfall decreasing and water stress increasing. The data obtained from the MODIS sensor, NDVI, EVI and LST, proved suitable to temporal-spatio analysis of drought occurrences and vegetation trends of the study area.A aplicação de técnicas de sensoriamento remoto em séries temporais têm se tornado uma forte ferramenta que vem se destacando na comunidade científica por permitir uma avaliação rápida e de baixo custo, dentro de uma margem de precisão. Nesse sentido, o registro frequente de imagens por sensores orbitais cobrindo grandes áreas da superfície terrestre permite a construção e a análise de séries temporais de dados de vegetação de diferentes fisionomias, auxiliando no estudo da dinâmica da vegetação e na disposição espacial de eventos de seca de intensidades distintas. Objetivou-se com este trabalho analisar ocorrências de seca e tendências espaço-temporal da vegetação e relacioná-las com a variação climática no período de 2007 a 2015 na Reserva Biológica de Sooretama e zona de amortecimento. Para isso foram utilizadas imagens NDVI, EVI e TST do sensor MODIS e para a análise espaço-temporal de secas, foi utilizado o Índice de Condição da Vegetação (ICV). Foi calculada a correlação de Pearson entre os valores médios dos índices de vegetação e as variáveis climáticas de modo a definir o índice mais adequado para a área de estudo e posterior emprego no índice de seca. As imagens e gráficos de ocorrência de seca na sua classe mais crítica (severa e extrema) foram comparadas com o acumulado de precipitação pluvial, deficiência hídrica e suas anomalias para cada estação do ano. Além disso, foram obtidos os valores máximos, médios e mínimos de ICV e relacionados com os valores máximos, médios e mínimos de TST por meio da análise gráfica e de regressão. Posteriormente, foram calculadas as anomalias de TST e cruzadas com as estações do ano que apresentaram maiores extensões de seca de maior severidade. Em relação às análises das tendências interanuais das séries temporais de índices de vegetação, estas foram realizadas por meio das metodologias de tendência monotônica de Mann-Kendal e análises de tendências sazonais. As imagens foram importadas, em formato .img para o software TerrSet, no qual foi utilizado o módulo Earth Trends Modeler (ETM) para processamento e análise das tendências de comportamento dos índices de vegetação. Foi criado um arquivo de série temporal para cada grupo de imagens, NDVI, EVI, na qual cada série consiste em um par de arquivos: Um arquivo de varredura contendo as imagens da série de tempo, em formato .rgf e um arquivo de documentação que descreve as características temporais da série, em formato .tsf. Os resultados indicaram que o índice EVI do sensor MODIS apresentou maiores correlações significativas com as variáveis meteorológicas e grande potencial para análises de ocorrências de seca para regiões com alta densidade de biomassa como florestas nativas. Os anos de 2007, 2013 e 2015 ocorreram secas de ordem severa e extrema em maiores extensões em relação às demais anos do período analisado. O Índice ICV apresentou-se adequado para monitoramento de ocorrências de seca na área de estudo, com concordância temporal e espacial com variáveis ambientais e ocorrências de El Niño. Ao longo do período analisado, constatou-se que ocorreu diminuição da biomassa vegetal, observada em ambos os índices de vegetação, por meio das tendências negativas observadas nas séries temporais de imagens, sendo mais evidenciado no EVI. As áreas de floresta natural foram as que apresentaram maior diminuição do vigor vegetativo observado nas imagens de significância. Os valores de média anual de EVI e NDVI e sua diminuição ao longo dos anos apresentaram concordância com o decréscimo da precipitação e aumento da deficiência hídrica. Os dados obtidos a partir do sensor MODIS, NDVI, EVI e TST, mostraram-se adequados para a análise espaço-temporal de ocorrências de seca e de tendências na vegetação da área de estudo.TextBRANCO, Elvis Ricardo Figueira. Ocorrências de seca e tendências da vegetação na reserva biológica de Sooretama e zona de amortecimento, no estado do Espírito Santo, Brasil. 2016. Dissertação (Mestrado em Ciências Florestais) – Programa de Pós-Graduação em Ciências Florestais, Universidade Federal do Espírito Santo, Centro de Ciências Agrárias e Engenharias, Jerônimo Monteiro, 2016.http://repositorio.ufes.br/handle/10/7691porUniversidade Federal do Espírito SantoMestrado em Ciências FlorestaisPrograma de Pós-Graduação em Ciências FlorestaisUFESBRCentro de Ciências Agrárias e EngenhariasModis imagesDroughtMeteorological variablesImagens ModisVariáveis meteorológicasSecas - SooretamaSensoriamento remoto - SooretamaClimatologiaRecursos Florestais e Engenharia Florestal630Ocorrências de seca e tendências da vegetação na reserva biológica de Sooretama e zona de amortecimento, no estado do Espírito Santo, BrasilDrought occurrences and vegetation trends in_x000D_ the Sooretama Biological Reserve and damping zone, in Espírito Santo state,_x000D_ Brazilinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)instname:Universidade Federal do Espírito Santo (UFES)instacron:UFESORIGINALElvisRicardoFigueiraBranco-2016-trabalho.pdfapplication/pdf7204528http://repositorio.ufes.br/bitstreams/9fea3cc7-8d1a-401f-ab3c-ebd94c9affda/download929cb91fe55de01ea72ce55b8c0a694aMD5110/76912024-06-21 15:46:28.072oai:repositorio.ufes.br:10/7691http://repositorio.ufes.brRepositório InstitucionalPUBhttp://repositorio.ufes.br/oai/requestopendoar:21082024-07-11T14:32:23.720086Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)false |
dc.title.none.fl_str_mv |
Ocorrências de seca e tendências da vegetação na reserva biológica de Sooretama e zona de amortecimento, no estado do Espírito Santo, Brasil |
dc.title.alternative.none.fl_str_mv |
Drought occurrences and vegetation trends in_x000D_ the Sooretama Biological Reserve and damping zone, in Espírito Santo state,_x000D_ Brazil |
title |
Ocorrências de seca e tendências da vegetação na reserva biológica de Sooretama e zona de amortecimento, no estado do Espírito Santo, Brasil |
spellingShingle |
Ocorrências de seca e tendências da vegetação na reserva biológica de Sooretama e zona de amortecimento, no estado do Espírito Santo, Brasil Branco, Elvis Ricardo Figueira Modis images Drought Meteorological variables Imagens Modis Variáveis meteorológicas Recursos Florestais e Engenharia Florestal Secas - Sooretama Sensoriamento remoto - Sooretama Climatologia 630 |
title_short |
Ocorrências de seca e tendências da vegetação na reserva biológica de Sooretama e zona de amortecimento, no estado do Espírito Santo, Brasil |
title_full |
Ocorrências de seca e tendências da vegetação na reserva biológica de Sooretama e zona de amortecimento, no estado do Espírito Santo, Brasil |
title_fullStr |
Ocorrências de seca e tendências da vegetação na reserva biológica de Sooretama e zona de amortecimento, no estado do Espírito Santo, Brasil |
title_full_unstemmed |
Ocorrências de seca e tendências da vegetação na reserva biológica de Sooretama e zona de amortecimento, no estado do Espírito Santo, Brasil |
title_sort |
Ocorrências de seca e tendências da vegetação na reserva biológica de Sooretama e zona de amortecimento, no estado do Espírito Santo, Brasil |
author |
Branco, Elvis Ricardo Figueira |
author_facet |
Branco, Elvis Ricardo Figueira |
author_role |
author |
dc.contributor.advisor-co1.fl_str_mv |
Pezzopane, José Eduardo Macedo |
dc.contributor.advisor1.fl_str_mv |
Santos, Alexandre Rosa dos |
dc.contributor.author.fl_str_mv |
Branco, Elvis Ricardo Figueira |
dc.contributor.referee1.fl_str_mv |
Alexandre, Rodrigo Sobreira |
dc.contributor.referee2.fl_str_mv |
Santos, Aureo Banhos dos |
contributor_str_mv |
Pezzopane, José Eduardo Macedo Santos, Alexandre Rosa dos Alexandre, Rodrigo Sobreira Santos, Aureo Banhos dos |
dc.subject.eng.fl_str_mv |
Modis images Drought Meteorological variables |
topic |
Modis images Drought Meteorological variables Imagens Modis Variáveis meteorológicas Recursos Florestais e Engenharia Florestal Secas - Sooretama Sensoriamento remoto - Sooretama Climatologia 630 |
dc.subject.por.fl_str_mv |
Imagens Modis Variáveis meteorológicas |
dc.subject.cnpq.fl_str_mv |
Recursos Florestais e Engenharia Florestal |
dc.subject.br-rjbn.none.fl_str_mv |
Secas - Sooretama Sensoriamento remoto - Sooretama |
dc.subject.br-rjfgvb.none.fl_str_mv |
Climatologia |
dc.subject.udc.none.fl_str_mv |
630 |
description |
The application of remote sensing techniques in time series have become a strong tool that have been highlighted in the scientific community by allow rapid and low cost evaluation, within an accuracy margin. Thus, the frequent recording of images by satellite sensors covering large areas of the Earth surface allows the construction and analysis of time series of vegetation data of different physiognomy, assisting in the dynamic study of vegetation and the spatial arrangement of different intensities drought event. The current study aimed to analyze drought occurrences and time spatial trends in vegetation and to link them to climate change from 2007 to 2015 in the Sooretama biological reserve and surroundings. For this, were used NDVI, EVI and LST images of MODIS sensor to time-spatial analysis of droughts, was used the Vegetation Condition Index (VCI). Was calculated the Pearson's correlation between the mean values of vegetation index and climate variables in order to determine the most appropriate index for the study area and subsequent employment in the drought index VCI, used for monitoring drought. The drought occurrence images and graphics in severe and extreme classes were compared with the rainfall accumulated and its anomaly and water deficit accumulated and the anomaly for each season. In addition, was obtained the average, maximum and minimum values of VCI and related to the average, maximum and minimum values of LST through graphical analysis and regression. Then, was calculated the LST anomaly and crossed with the seasons that had higher drought extensions of greater severity. The analysis of the inter-annual trends of the time series of vegetation indexes were made through Mann-Kendal monotonic trend and seasonal trends analysis methodologies. The images were imported in .img format of TerrSet software, in wich was used the Earth Trends modeler module (ETM) for the trends analysis and processing of the behavior of vegetation indexes. It was created a time series file for each group of images, NDVI, EVI, in which each series consists of a pair of files: A scan file containing the time series images, in .rgf format and a documentation file that describes the temporal characteristics of the series in .tsf format. The results indicates that the EVI index of MODIS sensor showed higher significant correlations with the meteorological variables and great potential for drought occurrences analysis to regions with high density of biomass as native forests. In the years 2007, 2013 and 2015 occurred extreme and severe order drought in larger extensions compared to the other years. The VCI Index its presented suitable for drought occurrences monitoring in the study area, with temporal and spatial concordance with environmental variables and occurrences of El Niño. Over the period analyzed, it was found that there where a decrease of biomass observed in both vegetation indexes through of the negative trends observed in images time series, being more evident in the EVI. The natural forest areas showed the greatest decrease in vegetative vigor observed in the significance images. The annual average values of EVI and NDVI and its decrease over the years showed agreement with the rainfall decreasing and water stress increasing. The data obtained from the MODIS sensor, NDVI, EVI and LST, proved suitable to temporal-spatio analysis of drought occurrences and vegetation trends of the study area. |
publishDate |
2016 |
dc.date.issued.fl_str_mv |
2016-07-08 |
dc.date.accessioned.fl_str_mv |
2018-08-01T22:35:55Z |
dc.date.available.fl_str_mv |
2018-08-01 2018-08-01T22:35:55Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
BRANCO, Elvis Ricardo Figueira. Ocorrências de seca e tendências da vegetação na reserva biológica de Sooretama e zona de amortecimento, no estado do Espírito Santo, Brasil. 2016. Dissertação (Mestrado em Ciências Florestais) – Programa de Pós-Graduação em Ciências Florestais, Universidade Federal do Espírito Santo, Centro de Ciências Agrárias e Engenharias, Jerônimo Monteiro, 2016. |
dc.identifier.uri.fl_str_mv |
http://repositorio.ufes.br/handle/10/7691 |
identifier_str_mv |
BRANCO, Elvis Ricardo Figueira. Ocorrências de seca e tendências da vegetação na reserva biológica de Sooretama e zona de amortecimento, no estado do Espírito Santo, Brasil. 2016. Dissertação (Mestrado em Ciências Florestais) – Programa de Pós-Graduação em Ciências Florestais, Universidade Federal do Espírito Santo, Centro de Ciências Agrárias e Engenharias, Jerônimo Monteiro, 2016. |
url |
http://repositorio.ufes.br/handle/10/7691 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
Text |
dc.publisher.none.fl_str_mv |
Universidade Federal do Espírito Santo Mestrado em Ciências Florestais |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Ciências Florestais |
dc.publisher.initials.fl_str_mv |
UFES |
dc.publisher.country.fl_str_mv |
BR |
dc.publisher.department.fl_str_mv |
Centro de Ciências Agrárias e Engenharias |
publisher.none.fl_str_mv |
Universidade Federal do Espírito Santo Mestrado em Ciências Florestais |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) instname:Universidade Federal do Espírito Santo (UFES) instacron:UFES |
instname_str |
Universidade Federal do Espírito Santo (UFES) |
instacron_str |
UFES |
institution |
UFES |
reponame_str |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
collection |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
bitstream.url.fl_str_mv |
http://repositorio.ufes.br/bitstreams/9fea3cc7-8d1a-401f-ab3c-ebd94c9affda/download |
bitstream.checksum.fl_str_mv |
929cb91fe55de01ea72ce55b8c0a694a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES) |
repository.mail.fl_str_mv |
|
_version_ |
1813022607221456896 |