Biofluidos e espectrometria de massas para triagem de pacientes para COVID-19

Detalhes bibliográficos
Autor(a) principal: Almeida, Camila Medeiros de
Data de Publicação: 2024
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
Texto Completo: http://repositorio.ufes.br/handle/10/17639
Resumo: The COVID-19 disease has been and continues to be a global health concern. The identification of infected patients through rapid and efficient screenings remains necessary to contain its spread. Biological fluids, such as serum and saliva, offer ease of collection and provide rich information about molecular changes in the body during illness. The use of mass spectrometry (MS) combined with machine learning (ML) has been applied to biofluids from patients with diseases and controls to identify biomarkers and conduct rapid and effective screenings. Therefore, this thesis aims to present advancements in the search for disease biomarkers, particularly for COVID-19, using technologies based on Matrix-Assisted Laser Desorption Ionization Mass Spectrometry (MALDI MS) and Electrospray Ionization Mass Spectrometry (ESI MS), along with chemometric data treatments. To achieve this, a methodology was developed for screening patients suspected of having COVID-19 based on saliva samples, using MALDI MS with the assistance of Support Vector Machine (SVM) learning. This involved optimizing sample preparation and analysis parameters. The most efficient results in a shorter analysis time were obtained by digesting saliva with 10 μL of trypsin for 2 hours. Optimization of the parameters at 1M resolution was ideal for the analyses. SVM models were created using data from the analysis of 149 samples, 97 positive and 52 negative for COVID-19. Two models yielded the best results. SVM1 selected 780 variables with a false negative rate (FNR) of 0%, while SVM2 selected only 2 variables (525.4 Da and 1410.8 Da) with a 3% FNR. Another application of MS in biofluids was the development of a multiomic method for screening patients infected with SARS-CoV-2 based on serum lipid and proteomic profiles. ESI MS was used to investigate the lipid profile of 239 serum samples (119 positive and 120 negative for COVID-19). MALDI MS was used to analyze the proteomic profile of 300 serum samples (150 positive and 150 negative for COVID-19). After processing MS data and variable selection, statistical analyses such as Volcano plot, Heatmap, principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), and SVM were performed to distinguish the most relevant variables for classifying positive and negative samples for COVID-19. In lipidomic analyses using ESI(±)-Orbitrap MS and SVM models, sensitivities of 96.67% and 100%, specificities of 82.14% and 96.88%, and accuracies of 89.66% and 98.44% were observed for positive and negative ion mode analyses, respectively. In proteomic analyses using MALDI(+) MS, the linear PLS-DA model demonstrated an accuracy of 99.10%. Thus, the combination of MS techniques with chemometric data treatments has shown promising alternatives with high sensitivity and specificity to discriminate infected and non-infected biological samples by SARS-CoV-2
id UFES_bf9d55006099271b1ca52c4b986f3e29
oai_identifier_str oai:repositorio.ufes.br:10/17639
network_acronym_str UFES
network_name_str Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
repository_id_str 2108
spelling Mill, José Geraldohttps://orcid.org/0000-0002-0987-368Xhttp://lattes.cnpq.br/2497419234600362Romão, Wanderson https://orcid.org/0000-0002-2254-6683http://lattes.cnpq.br/9121022613112821Almeida, Camila Medeiros dehttps://orcid.org/0000-0003-3318-8583http://lattes.cnpq.br/4627760102080131Chaves, Andrea Rodrigues https://orcid.org/0000-0002-1600-1660http://lattes.cnpq.br/6064014965252121Campos, Luciene Cristina Gastalho https://orcid.org/0000-0002-5962-661Xhttp://lattes.cnpq.br/6872591263471658Cunha Neto, Alvaro https://orcid.org/0000-0002-1814-6214http://lattes.cnpq.br/7448379486432052Filgueiras, Paulo Roberto https://orcid.org/0000-0003-2617-1601http://lattes.cnpq.br/19079155472078612024-07-29T14:34:40Z2024-07-29T14:34:40Z2024-02-28The COVID-19 disease has been and continues to be a global health concern. The identification of infected patients through rapid and efficient screenings remains necessary to contain its spread. Biological fluids, such as serum and saliva, offer ease of collection and provide rich information about molecular changes in the body during illness. The use of mass spectrometry (MS) combined with machine learning (ML) has been applied to biofluids from patients with diseases and controls to identify biomarkers and conduct rapid and effective screenings. Therefore, this thesis aims to present advancements in the search for disease biomarkers, particularly for COVID-19, using technologies based on Matrix-Assisted Laser Desorption Ionization Mass Spectrometry (MALDI MS) and Electrospray Ionization Mass Spectrometry (ESI MS), along with chemometric data treatments. To achieve this, a methodology was developed for screening patients suspected of having COVID-19 based on saliva samples, using MALDI MS with the assistance of Support Vector Machine (SVM) learning. This involved optimizing sample preparation and analysis parameters. The most efficient results in a shorter analysis time were obtained by digesting saliva with 10 μL of trypsin for 2 hours. Optimization of the parameters at 1M resolution was ideal for the analyses. SVM models were created using data from the analysis of 149 samples, 97 positive and 52 negative for COVID-19. Two models yielded the best results. SVM1 selected 780 variables with a false negative rate (FNR) of 0%, while SVM2 selected only 2 variables (525.4 Da and 1410.8 Da) with a 3% FNR. Another application of MS in biofluids was the development of a multiomic method for screening patients infected with SARS-CoV-2 based on serum lipid and proteomic profiles. ESI MS was used to investigate the lipid profile of 239 serum samples (119 positive and 120 negative for COVID-19). MALDI MS was used to analyze the proteomic profile of 300 serum samples (150 positive and 150 negative for COVID-19). After processing MS data and variable selection, statistical analyses such as Volcano plot, Heatmap, principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), and SVM were performed to distinguish the most relevant variables for classifying positive and negative samples for COVID-19. In lipidomic analyses using ESI(±)-Orbitrap MS and SVM models, sensitivities of 96.67% and 100%, specificities of 82.14% and 96.88%, and accuracies of 89.66% and 98.44% were observed for positive and negative ion mode analyses, respectively. In proteomic analyses using MALDI(+) MS, the linear PLS-DA model demonstrated an accuracy of 99.10%. Thus, the combination of MS techniques with chemometric data treatments has shown promising alternatives with high sensitivity and specificity to discriminate infected and non-infected biological samples by SARS-CoV-2A doença COVID-19 foi e continua sendo uma preocupação na saúde mundial, a identificação de pacientes infectados em triagens rápidas e eficientes ainda são necessárias para conter a propagação. Os fluidos biológicos, como soro e saliva, oferecem facilidade de coleta e fornecem informações ricas sobre as alterações moleculares do corpo durante alguma doença. O uso da espectrometria de massas (do inglês mass spectrometry, MS) combinada com a aprendizagem de máquina (do inglês machine learning, ML) tem sido aplicado a biofluidos de pacientes portadores de doenças e controles, para a identificação de biomarcadores e realização de uma triagem rápida e eficaz. Assim, esta tese tem como objetivo apresentar os avanços na busca de biomarcadores de doenças, principalmente da COVID-19, utilizando tecnologias baseadas em ionização e dessorção a laser assistida por matriz (do inglês, matrix assisted laser desorption ionization, MALDI) MS e ionização por eletrospray (do inglês, electrospray ionization, ESI) MS e tratamentos de dados quimiométricos. Para isso, foi desenvolvida uma metodologia para triagens de pacientes com suspeita de COVID-19 a partir de amostras de saliva, utilizando MALDI MS mediante auxílio da aprendizagem por Máquina de Vetores de Suporte (do inglês, support-vector machine, SVM), otimizando o preparo de amostra e os parâmetros da análise. A maior eficiência em menor tempo de análise foi obtido com a digestão da saliva em 10 μL de tripsina por 2 h e uso de 1M de resolução. Modelos SVM foram criados com os dados das análises de 149 amostras, sendo estas 97 positivas e 52 negativas para COVID-19 por RT-PCR. Dois modelos apresentaram os melhores resultados. O SVM1 selecionou 780 variáveis e possui taxa de falso negativo (TFN) de 0%, já o SVM2 selecionou somente 2 variáveis (525,4 Da e 1410,8 Da) com TFN de 3%. Outra aplicação da MS em biofluidos foi o desenvolvimento de um método multiômico para triagem de pacientes infectados com SARS-CoV-2 com base nos perfis lipídicos e proteômicos do soro. A ESI MS foi utilizada para investigar o perfil lipídico de 239 amostras de soro (119 positivas e 120 negativas para COVID-19 pelo teste ELISA). A MALDI MS foi utilizada para analisar o perfil proteômico de 300 amostras de soro (150 positivas e 150 negativas para COVID-19 pelo teste ELISA). Após o processamento dos dados de MS e a seleção de variáveis, análises estatísticas, como Volcano plot, o Heatmap, a análise de componentes principais (do inglês, principal component analysis, PCA), a análise discriminante de mínimos quadrados parciais (do inglês, partial least squares-discriminant analysis, PLS-DA) e a SVM, foram realizadas para distinguir as variáveis mais relevantes para classificar amostras positivas e negativas para COVID-19. Nas análises lipidômicas usando ESI(±)-Orbitrap MS e modelos SVM, observou-se sensibilidades de 96,67% e 100%, especificidades de 82,14% e 96,88%, e acurácias de 89,66% e 98,44% para análises de modo de íon positivo e negativo, respectivamente. Já nas análises proteômicas usando MALDI(+)-TOF MS, o modelo linear PLS-DA demonstrou uma precisão de 99,10%. Sendo assim, a combinação das técnicas MS com tratamento de dados quimiométricos, demonstrou alternativas promissoras com alta sensibilidade e especificidade para discriminar amostras de biológicas infectadas e não infectadas pelo SARS-CoV-2Fundação de Amparo à Pesquisa e Inovação do Espírito Santo (Fapes) Texthttp://repositorio.ufes.br/handle/10/17639porptUniversidade Federal do Espírito SantoDoutorado em QuímicaPrograma de Pós-Graduação em QuímicaUFESBRCentro de Ciências Exatashttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessQuímicaBiofluidosQuímica analíticaEspectrometria de massaQuimiometriaAprendizagem de máquinaCOVID-19BiofluidsMass spectrometryMachine learningBiofluidos e espectrometria de massas para triagem de pacientes para COVID-19info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisreponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)instname:Universidade Federal do Espírito Santo (UFES)instacron:UFESca.mila_medeiros@hotmail.comORIGINALCamilaMedeirosdeAlmeida-2024-tese.pdfCamilaMedeirosdeAlmeida-2024-tese.pdfapplication/pdf3601743http://repositorio.ufes.br/bitstreams/f4c59027-5705-4978-ac4f-23cd724c1507/downloadae739eeea7b06906669026b90a0ddc7cMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufes.br/bitstreams/956221b9-eebe-4b9b-96ad-ea278f9c3bb8/download8a4605be74aa9ea9d79846c1fba20a33MD5210/176392024-08-27 11:15:21.328https://creativecommons.org/licenses/by-nc-nd/4.0/open accessoai:repositorio.ufes.br:10/17639http://repositorio.ufes.brRepositório InstitucionalPUBhttp://repositorio.ufes.br/oai/requestopendoar:21082024-10-15T17:52:42.592924Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)falseTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
dc.title.none.fl_str_mv Biofluidos e espectrometria de massas para triagem de pacientes para COVID-19
title Biofluidos e espectrometria de massas para triagem de pacientes para COVID-19
spellingShingle Biofluidos e espectrometria de massas para triagem de pacientes para COVID-19
Almeida, Camila Medeiros de
Química
Biofluidos
Química analítica
Espectrometria de massa
Quimiometria
Aprendizagem de máquina
COVID-19
Biofluids
Mass spectrometry
Machine learning
title_short Biofluidos e espectrometria de massas para triagem de pacientes para COVID-19
title_full Biofluidos e espectrometria de massas para triagem de pacientes para COVID-19
title_fullStr Biofluidos e espectrometria de massas para triagem de pacientes para COVID-19
title_full_unstemmed Biofluidos e espectrometria de massas para triagem de pacientes para COVID-19
title_sort Biofluidos e espectrometria de massas para triagem de pacientes para COVID-19
author Almeida, Camila Medeiros de
author_facet Almeida, Camila Medeiros de
author_role author
dc.contributor.authorID.none.fl_str_mv https://orcid.org/0000-0003-3318-8583
dc.contributor.authorLattes.none.fl_str_mv http://lattes.cnpq.br/4627760102080131
dc.contributor.advisor-co1.fl_str_mv Mill, José Geraldo
dc.contributor.advisor-co1ID.fl_str_mv https://orcid.org/0000-0002-0987-368X
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/2497419234600362
dc.contributor.advisor1.fl_str_mv Romão, Wanderson
dc.contributor.advisor1ID.fl_str_mv https://orcid.org/0000-0002-2254-6683
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/9121022613112821
dc.contributor.author.fl_str_mv Almeida, Camila Medeiros de
dc.contributor.referee1.fl_str_mv Chaves, Andrea Rodrigues
dc.contributor.referee1ID.fl_str_mv https://orcid.org/0000-0002-1600-1660
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/6064014965252121
dc.contributor.referee2.fl_str_mv Campos, Luciene Cristina Gastalho
dc.contributor.referee2ID.fl_str_mv https://orcid.org/0000-0002-5962-661X
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/6872591263471658
dc.contributor.referee3.fl_str_mv Cunha Neto, Alvaro
dc.contributor.referee3ID.fl_str_mv https://orcid.org/0000-0002-1814-6214
dc.contributor.referee3Lattes.fl_str_mv http://lattes.cnpq.br/7448379486432052
dc.contributor.referee4.fl_str_mv Filgueiras, Paulo Roberto
dc.contributor.referee4ID.fl_str_mv https://orcid.org/0000-0003-2617-1601
dc.contributor.referee4Lattes.fl_str_mv http://lattes.cnpq.br/1907915547207861
contributor_str_mv Mill, José Geraldo
Romão, Wanderson
Chaves, Andrea Rodrigues
Campos, Luciene Cristina Gastalho
Cunha Neto, Alvaro
Filgueiras, Paulo Roberto
dc.subject.cnpq.fl_str_mv Química
topic Química
Biofluidos
Química analítica
Espectrometria de massa
Quimiometria
Aprendizagem de máquina
COVID-19
Biofluids
Mass spectrometry
Machine learning
dc.subject.por.fl_str_mv Biofluidos
Química analítica
Espectrometria de massa
Quimiometria
Aprendizagem de máquina
COVID-19
Biofluids
Mass spectrometry
Machine learning
description The COVID-19 disease has been and continues to be a global health concern. The identification of infected patients through rapid and efficient screenings remains necessary to contain its spread. Biological fluids, such as serum and saliva, offer ease of collection and provide rich information about molecular changes in the body during illness. The use of mass spectrometry (MS) combined with machine learning (ML) has been applied to biofluids from patients with diseases and controls to identify biomarkers and conduct rapid and effective screenings. Therefore, this thesis aims to present advancements in the search for disease biomarkers, particularly for COVID-19, using technologies based on Matrix-Assisted Laser Desorption Ionization Mass Spectrometry (MALDI MS) and Electrospray Ionization Mass Spectrometry (ESI MS), along with chemometric data treatments. To achieve this, a methodology was developed for screening patients suspected of having COVID-19 based on saliva samples, using MALDI MS with the assistance of Support Vector Machine (SVM) learning. This involved optimizing sample preparation and analysis parameters. The most efficient results in a shorter analysis time were obtained by digesting saliva with 10 μL of trypsin for 2 hours. Optimization of the parameters at 1M resolution was ideal for the analyses. SVM models were created using data from the analysis of 149 samples, 97 positive and 52 negative for COVID-19. Two models yielded the best results. SVM1 selected 780 variables with a false negative rate (FNR) of 0%, while SVM2 selected only 2 variables (525.4 Da and 1410.8 Da) with a 3% FNR. Another application of MS in biofluids was the development of a multiomic method for screening patients infected with SARS-CoV-2 based on serum lipid and proteomic profiles. ESI MS was used to investigate the lipid profile of 239 serum samples (119 positive and 120 negative for COVID-19). MALDI MS was used to analyze the proteomic profile of 300 serum samples (150 positive and 150 negative for COVID-19). After processing MS data and variable selection, statistical analyses such as Volcano plot, Heatmap, principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), and SVM were performed to distinguish the most relevant variables for classifying positive and negative samples for COVID-19. In lipidomic analyses using ESI(±)-Orbitrap MS and SVM models, sensitivities of 96.67% and 100%, specificities of 82.14% and 96.88%, and accuracies of 89.66% and 98.44% were observed for positive and negative ion mode analyses, respectively. In proteomic analyses using MALDI(+) MS, the linear PLS-DA model demonstrated an accuracy of 99.10%. Thus, the combination of MS techniques with chemometric data treatments has shown promising alternatives with high sensitivity and specificity to discriminate infected and non-infected biological samples by SARS-CoV-2
publishDate 2024
dc.date.accessioned.fl_str_mv 2024-07-29T14:34:40Z
dc.date.available.fl_str_mv 2024-07-29T14:34:40Z
dc.date.issued.fl_str_mv 2024-02-28
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufes.br/handle/10/17639
url http://repositorio.ufes.br/handle/10/17639
dc.language.iso.fl_str_mv por
pt
language por
language_invalid_str_mv pt
dc.rights.driver.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv Text
dc.publisher.none.fl_str_mv Universidade Federal do Espírito Santo
Doutorado em Química
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Química
dc.publisher.initials.fl_str_mv UFES
dc.publisher.country.fl_str_mv BR
dc.publisher.department.fl_str_mv Centro de Ciências Exatas
publisher.none.fl_str_mv Universidade Federal do Espírito Santo
Doutorado em Química
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
instname:Universidade Federal do Espírito Santo (UFES)
instacron:UFES
instname_str Universidade Federal do Espírito Santo (UFES)
instacron_str UFES
institution UFES
reponame_str Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
collection Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
bitstream.url.fl_str_mv http://repositorio.ufes.br/bitstreams/f4c59027-5705-4978-ac4f-23cd724c1507/download
http://repositorio.ufes.br/bitstreams/956221b9-eebe-4b9b-96ad-ea278f9c3bb8/download
bitstream.checksum.fl_str_mv ae739eeea7b06906669026b90a0ddc7c
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)
repository.mail.fl_str_mv
_version_ 1813022509359955968