Biofluidos e espectrometria de massas para triagem de pacientes para COVID-19
Autor(a) principal: | |
---|---|
Data de Publicação: | 2024 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
Texto Completo: | http://repositorio.ufes.br/handle/10/17639 |
Resumo: | The COVID-19 disease has been and continues to be a global health concern. The identification of infected patients through rapid and efficient screenings remains necessary to contain its spread. Biological fluids, such as serum and saliva, offer ease of collection and provide rich information about molecular changes in the body during illness. The use of mass spectrometry (MS) combined with machine learning (ML) has been applied to biofluids from patients with diseases and controls to identify biomarkers and conduct rapid and effective screenings. Therefore, this thesis aims to present advancements in the search for disease biomarkers, particularly for COVID-19, using technologies based on Matrix-Assisted Laser Desorption Ionization Mass Spectrometry (MALDI MS) and Electrospray Ionization Mass Spectrometry (ESI MS), along with chemometric data treatments. To achieve this, a methodology was developed for screening patients suspected of having COVID-19 based on saliva samples, using MALDI MS with the assistance of Support Vector Machine (SVM) learning. This involved optimizing sample preparation and analysis parameters. The most efficient results in a shorter analysis time were obtained by digesting saliva with 10 μL of trypsin for 2 hours. Optimization of the parameters at 1M resolution was ideal for the analyses. SVM models were created using data from the analysis of 149 samples, 97 positive and 52 negative for COVID-19. Two models yielded the best results. SVM1 selected 780 variables with a false negative rate (FNR) of 0%, while SVM2 selected only 2 variables (525.4 Da and 1410.8 Da) with a 3% FNR. Another application of MS in biofluids was the development of a multiomic method for screening patients infected with SARS-CoV-2 based on serum lipid and proteomic profiles. ESI MS was used to investigate the lipid profile of 239 serum samples (119 positive and 120 negative for COVID-19). MALDI MS was used to analyze the proteomic profile of 300 serum samples (150 positive and 150 negative for COVID-19). After processing MS data and variable selection, statistical analyses such as Volcano plot, Heatmap, principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), and SVM were performed to distinguish the most relevant variables for classifying positive and negative samples for COVID-19. In lipidomic analyses using ESI(±)-Orbitrap MS and SVM models, sensitivities of 96.67% and 100%, specificities of 82.14% and 96.88%, and accuracies of 89.66% and 98.44% were observed for positive and negative ion mode analyses, respectively. In proteomic analyses using MALDI(+) MS, the linear PLS-DA model demonstrated an accuracy of 99.10%. Thus, the combination of MS techniques with chemometric data treatments has shown promising alternatives with high sensitivity and specificity to discriminate infected and non-infected biological samples by SARS-CoV-2 |
id |
UFES_bf9d55006099271b1ca52c4b986f3e29 |
---|---|
oai_identifier_str |
oai:repositorio.ufes.br:10/17639 |
network_acronym_str |
UFES |
network_name_str |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
repository_id_str |
2108 |
spelling |
Mill, José Geraldohttps://orcid.org/0000-0002-0987-368Xhttp://lattes.cnpq.br/2497419234600362Romão, Wanderson https://orcid.org/0000-0002-2254-6683http://lattes.cnpq.br/9121022613112821Almeida, Camila Medeiros dehttps://orcid.org/0000-0003-3318-8583http://lattes.cnpq.br/4627760102080131Chaves, Andrea Rodrigues https://orcid.org/0000-0002-1600-1660http://lattes.cnpq.br/6064014965252121Campos, Luciene Cristina Gastalho https://orcid.org/0000-0002-5962-661Xhttp://lattes.cnpq.br/6872591263471658Cunha Neto, Alvaro https://orcid.org/0000-0002-1814-6214http://lattes.cnpq.br/7448379486432052Filgueiras, Paulo Roberto https://orcid.org/0000-0003-2617-1601http://lattes.cnpq.br/19079155472078612024-07-29T14:34:40Z2024-07-29T14:34:40Z2024-02-28The COVID-19 disease has been and continues to be a global health concern. The identification of infected patients through rapid and efficient screenings remains necessary to contain its spread. Biological fluids, such as serum and saliva, offer ease of collection and provide rich information about molecular changes in the body during illness. The use of mass spectrometry (MS) combined with machine learning (ML) has been applied to biofluids from patients with diseases and controls to identify biomarkers and conduct rapid and effective screenings. Therefore, this thesis aims to present advancements in the search for disease biomarkers, particularly for COVID-19, using technologies based on Matrix-Assisted Laser Desorption Ionization Mass Spectrometry (MALDI MS) and Electrospray Ionization Mass Spectrometry (ESI MS), along with chemometric data treatments. To achieve this, a methodology was developed for screening patients suspected of having COVID-19 based on saliva samples, using MALDI MS with the assistance of Support Vector Machine (SVM) learning. This involved optimizing sample preparation and analysis parameters. The most efficient results in a shorter analysis time were obtained by digesting saliva with 10 μL of trypsin for 2 hours. Optimization of the parameters at 1M resolution was ideal for the analyses. SVM models were created using data from the analysis of 149 samples, 97 positive and 52 negative for COVID-19. Two models yielded the best results. SVM1 selected 780 variables with a false negative rate (FNR) of 0%, while SVM2 selected only 2 variables (525.4 Da and 1410.8 Da) with a 3% FNR. Another application of MS in biofluids was the development of a multiomic method for screening patients infected with SARS-CoV-2 based on serum lipid and proteomic profiles. ESI MS was used to investigate the lipid profile of 239 serum samples (119 positive and 120 negative for COVID-19). MALDI MS was used to analyze the proteomic profile of 300 serum samples (150 positive and 150 negative for COVID-19). After processing MS data and variable selection, statistical analyses such as Volcano plot, Heatmap, principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), and SVM were performed to distinguish the most relevant variables for classifying positive and negative samples for COVID-19. In lipidomic analyses using ESI(±)-Orbitrap MS and SVM models, sensitivities of 96.67% and 100%, specificities of 82.14% and 96.88%, and accuracies of 89.66% and 98.44% were observed for positive and negative ion mode analyses, respectively. In proteomic analyses using MALDI(+) MS, the linear PLS-DA model demonstrated an accuracy of 99.10%. Thus, the combination of MS techniques with chemometric data treatments has shown promising alternatives with high sensitivity and specificity to discriminate infected and non-infected biological samples by SARS-CoV-2A doença COVID-19 foi e continua sendo uma preocupação na saúde mundial, a identificação de pacientes infectados em triagens rápidas e eficientes ainda são necessárias para conter a propagação. Os fluidos biológicos, como soro e saliva, oferecem facilidade de coleta e fornecem informações ricas sobre as alterações moleculares do corpo durante alguma doença. O uso da espectrometria de massas (do inglês mass spectrometry, MS) combinada com a aprendizagem de máquina (do inglês machine learning, ML) tem sido aplicado a biofluidos de pacientes portadores de doenças e controles, para a identificação de biomarcadores e realização de uma triagem rápida e eficaz. Assim, esta tese tem como objetivo apresentar os avanços na busca de biomarcadores de doenças, principalmente da COVID-19, utilizando tecnologias baseadas em ionização e dessorção a laser assistida por matriz (do inglês, matrix assisted laser desorption ionization, MALDI) MS e ionização por eletrospray (do inglês, electrospray ionization, ESI) MS e tratamentos de dados quimiométricos. Para isso, foi desenvolvida uma metodologia para triagens de pacientes com suspeita de COVID-19 a partir de amostras de saliva, utilizando MALDI MS mediante auxílio da aprendizagem por Máquina de Vetores de Suporte (do inglês, support-vector machine, SVM), otimizando o preparo de amostra e os parâmetros da análise. A maior eficiência em menor tempo de análise foi obtido com a digestão da saliva em 10 μL de tripsina por 2 h e uso de 1M de resolução. Modelos SVM foram criados com os dados das análises de 149 amostras, sendo estas 97 positivas e 52 negativas para COVID-19 por RT-PCR. Dois modelos apresentaram os melhores resultados. O SVM1 selecionou 780 variáveis e possui taxa de falso negativo (TFN) de 0%, já o SVM2 selecionou somente 2 variáveis (525,4 Da e 1410,8 Da) com TFN de 3%. Outra aplicação da MS em biofluidos foi o desenvolvimento de um método multiômico para triagem de pacientes infectados com SARS-CoV-2 com base nos perfis lipídicos e proteômicos do soro. A ESI MS foi utilizada para investigar o perfil lipídico de 239 amostras de soro (119 positivas e 120 negativas para COVID-19 pelo teste ELISA). A MALDI MS foi utilizada para analisar o perfil proteômico de 300 amostras de soro (150 positivas e 150 negativas para COVID-19 pelo teste ELISA). Após o processamento dos dados de MS e a seleção de variáveis, análises estatísticas, como Volcano plot, o Heatmap, a análise de componentes principais (do inglês, principal component analysis, PCA), a análise discriminante de mínimos quadrados parciais (do inglês, partial least squares-discriminant analysis, PLS-DA) e a SVM, foram realizadas para distinguir as variáveis mais relevantes para classificar amostras positivas e negativas para COVID-19. Nas análises lipidômicas usando ESI(±)-Orbitrap MS e modelos SVM, observou-se sensibilidades de 96,67% e 100%, especificidades de 82,14% e 96,88%, e acurácias de 89,66% e 98,44% para análises de modo de íon positivo e negativo, respectivamente. Já nas análises proteômicas usando MALDI(+)-TOF MS, o modelo linear PLS-DA demonstrou uma precisão de 99,10%. Sendo assim, a combinação das técnicas MS com tratamento de dados quimiométricos, demonstrou alternativas promissoras com alta sensibilidade e especificidade para discriminar amostras de biológicas infectadas e não infectadas pelo SARS-CoV-2Fundação de Amparo à Pesquisa e Inovação do Espírito Santo (Fapes) Texthttp://repositorio.ufes.br/handle/10/17639porptUniversidade Federal do Espírito SantoDoutorado em QuímicaPrograma de Pós-Graduação em QuímicaUFESBRCentro de Ciências Exatashttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessQuímicaBiofluidosQuímica analíticaEspectrometria de massaQuimiometriaAprendizagem de máquinaCOVID-19BiofluidsMass spectrometryMachine learningBiofluidos e espectrometria de massas para triagem de pacientes para COVID-19info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisreponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)instname:Universidade Federal do Espírito Santo (UFES)instacron:UFESca.mila_medeiros@hotmail.comORIGINALCamilaMedeirosdeAlmeida-2024-tese.pdfCamilaMedeirosdeAlmeida-2024-tese.pdfapplication/pdf3601743http://repositorio.ufes.br/bitstreams/f4c59027-5705-4978-ac4f-23cd724c1507/downloadae739eeea7b06906669026b90a0ddc7cMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufes.br/bitstreams/956221b9-eebe-4b9b-96ad-ea278f9c3bb8/download8a4605be74aa9ea9d79846c1fba20a33MD5210/176392024-08-27 11:15:21.328https://creativecommons.org/licenses/by-nc-nd/4.0/open accessoai:repositorio.ufes.br:10/17639http://repositorio.ufes.brRepositório InstitucionalPUBhttp://repositorio.ufes.br/oai/requestopendoar:21082024-10-15T17:52:42.592924Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)falseTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
dc.title.none.fl_str_mv |
Biofluidos e espectrometria de massas para triagem de pacientes para COVID-19 |
title |
Biofluidos e espectrometria de massas para triagem de pacientes para COVID-19 |
spellingShingle |
Biofluidos e espectrometria de massas para triagem de pacientes para COVID-19 Almeida, Camila Medeiros de Química Biofluidos Química analítica Espectrometria de massa Quimiometria Aprendizagem de máquina COVID-19 Biofluids Mass spectrometry Machine learning |
title_short |
Biofluidos e espectrometria de massas para triagem de pacientes para COVID-19 |
title_full |
Biofluidos e espectrometria de massas para triagem de pacientes para COVID-19 |
title_fullStr |
Biofluidos e espectrometria de massas para triagem de pacientes para COVID-19 |
title_full_unstemmed |
Biofluidos e espectrometria de massas para triagem de pacientes para COVID-19 |
title_sort |
Biofluidos e espectrometria de massas para triagem de pacientes para COVID-19 |
author |
Almeida, Camila Medeiros de |
author_facet |
Almeida, Camila Medeiros de |
author_role |
author |
dc.contributor.authorID.none.fl_str_mv |
https://orcid.org/0000-0003-3318-8583 |
dc.contributor.authorLattes.none.fl_str_mv |
http://lattes.cnpq.br/4627760102080131 |
dc.contributor.advisor-co1.fl_str_mv |
Mill, José Geraldo |
dc.contributor.advisor-co1ID.fl_str_mv |
https://orcid.org/0000-0002-0987-368X |
dc.contributor.advisor-co1Lattes.fl_str_mv |
http://lattes.cnpq.br/2497419234600362 |
dc.contributor.advisor1.fl_str_mv |
Romão, Wanderson |
dc.contributor.advisor1ID.fl_str_mv |
https://orcid.org/0000-0002-2254-6683 |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/9121022613112821 |
dc.contributor.author.fl_str_mv |
Almeida, Camila Medeiros de |
dc.contributor.referee1.fl_str_mv |
Chaves, Andrea Rodrigues |
dc.contributor.referee1ID.fl_str_mv |
https://orcid.org/0000-0002-1600-1660 |
dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/6064014965252121 |
dc.contributor.referee2.fl_str_mv |
Campos, Luciene Cristina Gastalho |
dc.contributor.referee2ID.fl_str_mv |
https://orcid.org/0000-0002-5962-661X |
dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br/6872591263471658 |
dc.contributor.referee3.fl_str_mv |
Cunha Neto, Alvaro |
dc.contributor.referee3ID.fl_str_mv |
https://orcid.org/0000-0002-1814-6214 |
dc.contributor.referee3Lattes.fl_str_mv |
http://lattes.cnpq.br/7448379486432052 |
dc.contributor.referee4.fl_str_mv |
Filgueiras, Paulo Roberto |
dc.contributor.referee4ID.fl_str_mv |
https://orcid.org/0000-0003-2617-1601 |
dc.contributor.referee4Lattes.fl_str_mv |
http://lattes.cnpq.br/1907915547207861 |
contributor_str_mv |
Mill, José Geraldo Romão, Wanderson Chaves, Andrea Rodrigues Campos, Luciene Cristina Gastalho Cunha Neto, Alvaro Filgueiras, Paulo Roberto |
dc.subject.cnpq.fl_str_mv |
Química |
topic |
Química Biofluidos Química analítica Espectrometria de massa Quimiometria Aprendizagem de máquina COVID-19 Biofluids Mass spectrometry Machine learning |
dc.subject.por.fl_str_mv |
Biofluidos Química analítica Espectrometria de massa Quimiometria Aprendizagem de máquina COVID-19 Biofluids Mass spectrometry Machine learning |
description |
The COVID-19 disease has been and continues to be a global health concern. The identification of infected patients through rapid and efficient screenings remains necessary to contain its spread. Biological fluids, such as serum and saliva, offer ease of collection and provide rich information about molecular changes in the body during illness. The use of mass spectrometry (MS) combined with machine learning (ML) has been applied to biofluids from patients with diseases and controls to identify biomarkers and conduct rapid and effective screenings. Therefore, this thesis aims to present advancements in the search for disease biomarkers, particularly for COVID-19, using technologies based on Matrix-Assisted Laser Desorption Ionization Mass Spectrometry (MALDI MS) and Electrospray Ionization Mass Spectrometry (ESI MS), along with chemometric data treatments. To achieve this, a methodology was developed for screening patients suspected of having COVID-19 based on saliva samples, using MALDI MS with the assistance of Support Vector Machine (SVM) learning. This involved optimizing sample preparation and analysis parameters. The most efficient results in a shorter analysis time were obtained by digesting saliva with 10 μL of trypsin for 2 hours. Optimization of the parameters at 1M resolution was ideal for the analyses. SVM models were created using data from the analysis of 149 samples, 97 positive and 52 negative for COVID-19. Two models yielded the best results. SVM1 selected 780 variables with a false negative rate (FNR) of 0%, while SVM2 selected only 2 variables (525.4 Da and 1410.8 Da) with a 3% FNR. Another application of MS in biofluids was the development of a multiomic method for screening patients infected with SARS-CoV-2 based on serum lipid and proteomic profiles. ESI MS was used to investigate the lipid profile of 239 serum samples (119 positive and 120 negative for COVID-19). MALDI MS was used to analyze the proteomic profile of 300 serum samples (150 positive and 150 negative for COVID-19). After processing MS data and variable selection, statistical analyses such as Volcano plot, Heatmap, principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), and SVM were performed to distinguish the most relevant variables for classifying positive and negative samples for COVID-19. In lipidomic analyses using ESI(±)-Orbitrap MS and SVM models, sensitivities of 96.67% and 100%, specificities of 82.14% and 96.88%, and accuracies of 89.66% and 98.44% were observed for positive and negative ion mode analyses, respectively. In proteomic analyses using MALDI(+) MS, the linear PLS-DA model demonstrated an accuracy of 99.10%. Thus, the combination of MS techniques with chemometric data treatments has shown promising alternatives with high sensitivity and specificity to discriminate infected and non-infected biological samples by SARS-CoV-2 |
publishDate |
2024 |
dc.date.accessioned.fl_str_mv |
2024-07-29T14:34:40Z |
dc.date.available.fl_str_mv |
2024-07-29T14:34:40Z |
dc.date.issued.fl_str_mv |
2024-02-28 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositorio.ufes.br/handle/10/17639 |
url |
http://repositorio.ufes.br/handle/10/17639 |
dc.language.iso.fl_str_mv |
por pt |
language |
por |
language_invalid_str_mv |
pt |
dc.rights.driver.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
Text |
dc.publisher.none.fl_str_mv |
Universidade Federal do Espírito Santo Doutorado em Química |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Química |
dc.publisher.initials.fl_str_mv |
UFES |
dc.publisher.country.fl_str_mv |
BR |
dc.publisher.department.fl_str_mv |
Centro de Ciências Exatas |
publisher.none.fl_str_mv |
Universidade Federal do Espírito Santo Doutorado em Química |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) instname:Universidade Federal do Espírito Santo (UFES) instacron:UFES |
instname_str |
Universidade Federal do Espírito Santo (UFES) |
instacron_str |
UFES |
institution |
UFES |
reponame_str |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
collection |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
bitstream.url.fl_str_mv |
http://repositorio.ufes.br/bitstreams/f4c59027-5705-4978-ac4f-23cd724c1507/download http://repositorio.ufes.br/bitstreams/956221b9-eebe-4b9b-96ad-ea278f9c3bb8/download |
bitstream.checksum.fl_str_mv |
ae739eeea7b06906669026b90a0ddc7c 8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES) |
repository.mail.fl_str_mv |
|
_version_ |
1813022509359955968 |