Análise do nível de estresse baseada em sinais de eletroencefalografia e de condutância da pele
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
Texto Completo: | http://repositorio.ufes.br/handle/10/1354 |
Resumo: | The stress can affect everyone, independently of age, gender or ethnicity. The human body uses stress as an adaptive response in relations to various conditions, which require an adaptation of the body to face such a situation. Depending on the stressor stimulus, the stress is classified as physical, mental or emotional stress. However, the stress is not necessarily a bad thing or something pathological; in fact, it is a vital adaptation mechanism for the survival of the human species. The number of people who are affected negatively by stress has grown in last decades. Recent research highlights that in the United States about 60% to 90% of medical care were related in some way with stress. In Brazil, around 80% of the population have been affected by stress, and 30% of these are in the most critical phase. Nowadays, the main form of stress identification is still held by self-report questionnaire, thus, this research presents a methodology for stress analysis based on skin conductance and EEG signals. The parameters used for EEG are the asymmetry of alpha rhythm, and the ratio between the beta and alpha rhythms, both in the frontal and prefrontal cortex. For the EEG signal recording handheld device is used. It has electrodes that are specifically located on the positions according to the International 10/20 System (aF3, F3, F4, aF4). The participants are the Military Firefighters of the first Cia of Vitoria (Brazil), and three classes of emotional stimuli are used through the use of images belonging to the IAPS (International Affective Picture System) database, being called positive, calm and negatives classes. The accuracy of results through SVM (Support Vector Machine) classifier are 88.24% for positive stimuli class, 84.09% for calm class and 92.86% for negative class. Thus, this research presents a combination of parameters that can be measured with low-cost equipment, and provides conditions to differentiate stressful stimuli, and thereby providing indications that can be used to help the training of emergency care professionals. |
id |
UFES_ce495db8d0973e95e7ceb3ec901a5f59 |
---|---|
oai_identifier_str |
oai:repositorio.ufes.br:10/1354 |
network_acronym_str |
UFES |
network_name_str |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
repository_id_str |
2108 |
spelling |
Bastos Filho, Teodiano FreirePomer-Escher, Alexandre GeraldoNogueira, Breno ValentimBravo, Eduardo Caicedo2015-04-30T18:08:08Z2016-06-24T06:00:07Z2015-02-092015-02-09The stress can affect everyone, independently of age, gender or ethnicity. The human body uses stress as an adaptive response in relations to various conditions, which require an adaptation of the body to face such a situation. Depending on the stressor stimulus, the stress is classified as physical, mental or emotional stress. However, the stress is not necessarily a bad thing or something pathological; in fact, it is a vital adaptation mechanism for the survival of the human species. The number of people who are affected negatively by stress has grown in last decades. Recent research highlights that in the United States about 60% to 90% of medical care were related in some way with stress. In Brazil, around 80% of the population have been affected by stress, and 30% of these are in the most critical phase. Nowadays, the main form of stress identification is still held by self-report questionnaire, thus, this research presents a methodology for stress analysis based on skin conductance and EEG signals. The parameters used for EEG are the asymmetry of alpha rhythm, and the ratio between the beta and alpha rhythms, both in the frontal and prefrontal cortex. For the EEG signal recording handheld device is used. It has electrodes that are specifically located on the positions according to the International 10/20 System (aF3, F3, F4, aF4). The participants are the Military Firefighters of the first Cia of Vitoria (Brazil), and three classes of emotional stimuli are used through the use of images belonging to the IAPS (International Affective Picture System) database, being called positive, calm and negatives classes. The accuracy of results through SVM (Support Vector Machine) classifier are 88.24% for positive stimuli class, 84.09% for calm class and 92.86% for negative class. Thus, this research presents a combination of parameters that can be measured with low-cost equipment, and provides conditions to differentiate stressful stimuli, and thereby providing indications that can be used to help the training of emergency care professionals.O estresse pode afetar qualquer pessoa, independente de idade, sexo ou etnia. O organismo humano o utiliza como uma resposta adaptativa frente a situações diversas, as quais requeiram alguma adaptação do organismo para que possa enfrentar tal situação. Dependendo do estímulo estressor, pode ser gerado no indivíduo desgastes físico, mental ou emocional, no entanto, o estresse não representa necessariamente algo ruim ou patológico; este é um mecanismo de adaptação vital para a sobrevivência da espécie humana. Porém, o número de pessoas que são afetadas de forma negativa pelo estresse tem crescido imensamente nas últimas décadas. Pesquisas destacam que nos Estados Unidos cerca de 60% a 90% dos atendimentos médicos estão relacionados de alguma maneira com o estresse, enquanto que no Brasil aproximadamente 80% da população sofre de estresse, sendo que desses, 30% encontram-se na fase mais crítica, a chamada fase de exaustão. Tendo em vista que a principal forma de identificação de estresse ainda é realizada através do uso de questionário de autorrelato. O presente estudo apresenta como contribuição uma metodologia de análise do nível de estresse baseada na variação da condutância galvânica da pele e de sinais de eletroencefalografia, sendo utilizados como parâmetros a assimetria do ritmo alfa, assim como a razão entre os ritmos beta e alfa no córtex frontal e pré-frontal. Para a gravação dos sinais de EEG foi utilizado um dispositivo portátil, com eletrodos especificamente situados nas posições aF3, F3, F4 e aF4, de acordo com o Sistema Internacional 10/20 de posicionamento de eletrodos. Os participantes deste estudo são Bombeiros Militares da 1ª Cia de Vitória-ES. Foram utilizadas três classes de estímulos emocionais positivos, calmos e negativos, através da utilização de imagens pertencentes ao banco de dados IAPS (International Affective Picture System). Os resultados de acurácia obtidos através de um classificador SVM (Support Vector Machine) chegam a 88,24% para classe de estímulos positivos, 84,09% para classe calma e de 92,86% para os estímulos negativos. Deste modo, esta pesquisa apresenta uma combinação de parâmetros que podem ser aferidos com equipamentos de baixo custo, e fornecem condições de diferenciar estímulos estressantes, podendo assim, ser utilizada para auxiliar no treinamento de profissionais da área de urgência e emergência.Texthttp://repositorio.ufes.br/handle/10/1354porUniversidade Federal do Espírito SantoMestrado em BiotecnologiaPrograma de Pós-Graduação em BiotecnologiaUFESBRCentro de Ciências da SaúdeStress (Fisiologia)EletroencefalografiaEmoçõesAssimetriaBiotecnologia61Análise do nível de estresse baseada em sinais de eletroencefalografia e de condutância da peleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)instname:Universidade Federal do Espírito Santo (UFES)instacron:UFESORIGINALDissertação Alexandre Geraldo.pdfDissertação Alexandre Geraldo.pdfTexto completoapplication/pdf4424243http://repositorio.ufes.br/bitstreams/7dca97bd-894b-4e1f-a81e-373ff009d53f/download897278e692dc42b154980172e31e4878MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.ufes.br/bitstreams/4acacb36-b080-405b-b044-dd5fdec18080/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-822376http://repositorio.ufes.br/bitstreams/5b03eed8-73dc-4aa7-9e2f-a2ea7fc081f2/downloadb292a83e42bd8ad62533bba1395b83ffMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823148http://repositorio.ufes.br/bitstreams/4f4d5dc2-9d8f-474e-901d-d0c1dff9ddd0/download9da0b6dfac957114c6a7714714b86306MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufes.br/bitstreams/11b5f87c-f6f7-4688-aaa9-61f3fbd2e6b5/download8a4605be74aa9ea9d79846c1fba20a33MD5510/13542024-07-16 17:09:17.544oai:repositorio.ufes.br:10/1354http://repositorio.ufes.brRepositório InstitucionalPUBhttp://repositorio.ufes.br/oai/requestopendoar:21082024-10-15T17:55:49.045220Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)falseTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
dc.title.none.fl_str_mv |
Análise do nível de estresse baseada em sinais de eletroencefalografia e de condutância da pele |
title |
Análise do nível de estresse baseada em sinais de eletroencefalografia e de condutância da pele |
spellingShingle |
Análise do nível de estresse baseada em sinais de eletroencefalografia e de condutância da pele Pomer-Escher, Alexandre Geraldo Stress (Fisiologia) Eletroencefalografia Emoções Assimetria Biotecnologia 61 |
title_short |
Análise do nível de estresse baseada em sinais de eletroencefalografia e de condutância da pele |
title_full |
Análise do nível de estresse baseada em sinais de eletroencefalografia e de condutância da pele |
title_fullStr |
Análise do nível de estresse baseada em sinais de eletroencefalografia e de condutância da pele |
title_full_unstemmed |
Análise do nível de estresse baseada em sinais de eletroencefalografia e de condutância da pele |
title_sort |
Análise do nível de estresse baseada em sinais de eletroencefalografia e de condutância da pele |
author |
Pomer-Escher, Alexandre Geraldo |
author_facet |
Pomer-Escher, Alexandre Geraldo |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Bastos Filho, Teodiano Freire |
dc.contributor.author.fl_str_mv |
Pomer-Escher, Alexandre Geraldo |
dc.contributor.referee1.fl_str_mv |
Nogueira, Breno Valentim |
dc.contributor.referee2.fl_str_mv |
Bravo, Eduardo Caicedo |
contributor_str_mv |
Bastos Filho, Teodiano Freire Nogueira, Breno Valentim Bravo, Eduardo Caicedo |
dc.subject.por.fl_str_mv |
Stress (Fisiologia) Eletroencefalografia Emoções Assimetria |
topic |
Stress (Fisiologia) Eletroencefalografia Emoções Assimetria Biotecnologia 61 |
dc.subject.cnpq.fl_str_mv |
Biotecnologia |
dc.subject.udc.none.fl_str_mv |
61 |
description |
The stress can affect everyone, independently of age, gender or ethnicity. The human body uses stress as an adaptive response in relations to various conditions, which require an adaptation of the body to face such a situation. Depending on the stressor stimulus, the stress is classified as physical, mental or emotional stress. However, the stress is not necessarily a bad thing or something pathological; in fact, it is a vital adaptation mechanism for the survival of the human species. The number of people who are affected negatively by stress has grown in last decades. Recent research highlights that in the United States about 60% to 90% of medical care were related in some way with stress. In Brazil, around 80% of the population have been affected by stress, and 30% of these are in the most critical phase. Nowadays, the main form of stress identification is still held by self-report questionnaire, thus, this research presents a methodology for stress analysis based on skin conductance and EEG signals. The parameters used for EEG are the asymmetry of alpha rhythm, and the ratio between the beta and alpha rhythms, both in the frontal and prefrontal cortex. For the EEG signal recording handheld device is used. It has electrodes that are specifically located on the positions according to the International 10/20 System (aF3, F3, F4, aF4). The participants are the Military Firefighters of the first Cia of Vitoria (Brazil), and three classes of emotional stimuli are used through the use of images belonging to the IAPS (International Affective Picture System) database, being called positive, calm and negatives classes. The accuracy of results through SVM (Support Vector Machine) classifier are 88.24% for positive stimuli class, 84.09% for calm class and 92.86% for negative class. Thus, this research presents a combination of parameters that can be measured with low-cost equipment, and provides conditions to differentiate stressful stimuli, and thereby providing indications that can be used to help the training of emergency care professionals. |
publishDate |
2015 |
dc.date.submitted.none.fl_str_mv |
2015-02-09 |
dc.date.accessioned.fl_str_mv |
2015-04-30T18:08:08Z |
dc.date.issued.fl_str_mv |
2015-02-09 |
dc.date.available.fl_str_mv |
2016-06-24T06:00:07Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositorio.ufes.br/handle/10/1354 |
url |
http://repositorio.ufes.br/handle/10/1354 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
Text |
dc.publisher.none.fl_str_mv |
Universidade Federal do Espírito Santo Mestrado em Biotecnologia |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Biotecnologia |
dc.publisher.initials.fl_str_mv |
UFES |
dc.publisher.country.fl_str_mv |
BR |
dc.publisher.department.fl_str_mv |
Centro de Ciências da Saúde |
publisher.none.fl_str_mv |
Universidade Federal do Espírito Santo Mestrado em Biotecnologia |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) instname:Universidade Federal do Espírito Santo (UFES) instacron:UFES |
instname_str |
Universidade Federal do Espírito Santo (UFES) |
instacron_str |
UFES |
institution |
UFES |
reponame_str |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
collection |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
bitstream.url.fl_str_mv |
http://repositorio.ufes.br/bitstreams/7dca97bd-894b-4e1f-a81e-373ff009d53f/download http://repositorio.ufes.br/bitstreams/4acacb36-b080-405b-b044-dd5fdec18080/download http://repositorio.ufes.br/bitstreams/5b03eed8-73dc-4aa7-9e2f-a2ea7fc081f2/download http://repositorio.ufes.br/bitstreams/4f4d5dc2-9d8f-474e-901d-d0c1dff9ddd0/download http://repositorio.ufes.br/bitstreams/11b5f87c-f6f7-4688-aaa9-61f3fbd2e6b5/download |
bitstream.checksum.fl_str_mv |
897278e692dc42b154980172e31e4878 4afdbb8c545fd630ea7db775da747b2f b292a83e42bd8ad62533bba1395b83ff 9da0b6dfac957114c6a7714714b86306 8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES) |
repository.mail.fl_str_mv |
|
_version_ |
1813022530436333568 |