Protocolos e técnicas de análise de sinais sEMG aplicados à avaliação motora e robótica

Detalhes bibliográficos
Autor(a) principal: Vela, Jhon Freddy Sarmiento
Data de Publicação: 2013
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
Texto Completo: http://repositorio.ufes.br/handle/10/1882
Resumo: Technological advances in the last decade opened up the field for the development of information processing systems with high capacity of data storage. These advances in health have evolved in the development of devices for applications in Bioengineering and Biomedical Engineering, supporting the understanding of the physiological behavior, diagnosis, monitoring, treatment and control of various biological changes. Along with technological advances, the amount and complexity of information is increasing, compared to its usefulness and understanding, representing, for different areas of knowledge, a challenge to find viable alternatives for using the attributes of biological systems in the development of new technologies directed to improve the quality of life of human beings. Currently, the development of noninvasive protocols for capturing bioelectric signals are becoming a viable option for the diagnosis of myopathies, motor rehabilitation, biomechanical analysis, development of Human-Machine Interface, and autonomous control of robotic devices for people with severe motor disabilities among other applications. In all cases, the support of computational techniques, such as digital signal processing (DSP), and new algorithms based on artificial intelligence, has opened the opportunity to develop classification techniques for recognizing patterns which can be applied in biotechnology for health. This doctoral thesis develops protocols and techniques for analysis of sEMG signals, consisting of "instructed delay tasks", applied to the motor assessment and rehabilitation estrategies, involving analysis of inclusion-exclusion criteria for clinical history, control variables in experimental environment, capture, acquisition and processing of sEMG signal, digital group, filtering, segmentation, feature selection, classification and pattern recognition. Biotechnological applications with sEMG signals present a quantitative experimental approach in the form of case studies. The first case study is centered on three acquisition protocols for evaluation of proprioceptive knee, control of a robotic wheelchair for people with severe motor disabilities, and manipulation of a mobile robot for children with cognitive and motor disability, using a hybrid sensor (inclination + sEMG), which is a patent derivate of this thesis. The second case study, develops a protocol for acquisition of sEMG signals in order, to support the diagnosis of fibromyalgia using algorithms for evaluation of muscle fatigue in time domain (ARV, RMS) and frequency domain (MNF, MDF, AIF), with 30%, 60% and 80% of MVC. The third case study, develops a protocol for the acquisition of sEMG signals with low density and low level of muscle contraction, with control of the rest, for the recognition of different hand gestures in healthy and amputees, evaluating 14 characteristics , 8 in time domain, and 5 in frequency domain and Fractal Dimension (FD), with several of their combinations, which were classified with computational techniques of artificial intelligence, such as fuzzy logic (FL) and artificial neural networks of MLP type. The results for the first case study, has demonstrated the usefulness of threshold predetermination as RMS and slope, acquired with the hybrid sensor (inclination + sEMG), improving the accuracity sense of positioning in proprioceptive analysis of the knee compared to a commercial electrogoniometer in combination with sEMG signal. The hybrid sensor also was applied to the control of a robotic wheelchair, using head movements for self-displacement of persons with tetraplegia, as well as autonomous manipulation of a mobile robot by people with cognitive and motor disabilities, which was obtained with training, whose performance in interacting with the robot was evaluated by GAS index. In the second case study, the results obtained for assessment of fatigue in people with fibromyalgia (FM)have indicated a relationship between increasing load and muscle pain, especially with 80% of MVC. The linear regression of algorithms RMS, ARV and MNF havshown in both the inclination (α ) and intercept (β) an expected trend in the control group, with positive linear relationship to characteristics in the time domain and negative characteristics to the frequency domain, with 60% MVC, and 60% of isometric segment of sEMG signal, which were obtained with 20 isotonic contractions during flexion-extension of biceps braquii (RMS α = 1.1319, β = 275 706; MNF α = -0470, β = 91 482). In the case of volunteers with FM, the N3 voluntary presented a behavior with the highest expected trend of muscular fatigue at 80% MVC and 60% of isometric segment, obtained during isotonic movement of biceps braquii (RMS α = 5.92 β = 113.33; MNF α = β = -1.21 96.96). Finally, the third case study, identified, with the MLP classifier, a success rate of 94.9% for six movements of individual fingers, including rest (category A), and 97.5% of success rate for seven movements, including: fingers, wrist and grip (category B), both cases, with a combination of features RMS, WL, MAV and ZC. On the other hand, the results obtained by amputee volunteers showed better results with features in time domain, compared to fractal dimension (DF), with success rates of 93.9% using combination RMS, WL and MAV characteristics for category A, and 95.4% of success rate with combination of RMS, WL, MAV and ZC in category B.
id UFES_d2b5e0719028e74aba8bece71be70cd0
oai_identifier_str oai:repositorio.ufes.br:10/1882
network_acronym_str UFES
network_name_str Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
repository_id_str 2108
spelling Silva, Ian VictorBastos Filho, Teodiano FreireVela, Jhon Freddy SarmientoFernandes, Antonio Alberto RibeiroNogueira, Breno ValentimGuimarães, Marco César CunegundesAndrade, Adriano2016-05-16T14:15:50Z2016-06-24T06:00:05Z2013-12-162013-12-16Technological advances in the last decade opened up the field for the development of information processing systems with high capacity of data storage. These advances in health have evolved in the development of devices for applications in Bioengineering and Biomedical Engineering, supporting the understanding of the physiological behavior, diagnosis, monitoring, treatment and control of various biological changes. Along with technological advances, the amount and complexity of information is increasing, compared to its usefulness and understanding, representing, for different areas of knowledge, a challenge to find viable alternatives for using the attributes of biological systems in the development of new technologies directed to improve the quality of life of human beings. Currently, the development of noninvasive protocols for capturing bioelectric signals are becoming a viable option for the diagnosis of myopathies, motor rehabilitation, biomechanical analysis, development of Human-Machine Interface, and autonomous control of robotic devices for people with severe motor disabilities among other applications. In all cases, the support of computational techniques, such as digital signal processing (DSP), and new algorithms based on artificial intelligence, has opened the opportunity to develop classification techniques for recognizing patterns which can be applied in biotechnology for health. This doctoral thesis develops protocols and techniques for analysis of sEMG signals, consisting of "instructed delay tasks", applied to the motor assessment and rehabilitation estrategies, involving analysis of inclusion-exclusion criteria for clinical history, control variables in experimental environment, capture, acquisition and processing of sEMG signal, digital group, filtering, segmentation, feature selection, classification and pattern recognition. Biotechnological applications with sEMG signals present a quantitative experimental approach in the form of case studies. The first case study is centered on three acquisition protocols for evaluation of proprioceptive knee, control of a robotic wheelchair for people with severe motor disabilities, and manipulation of a mobile robot for children with cognitive and motor disability, using a hybrid sensor (inclination + sEMG), which is a patent derivate of this thesis. The second case study, develops a protocol for acquisition of sEMG signals in order, to support the diagnosis of fibromyalgia using algorithms for evaluation of muscle fatigue in time domain (ARV, RMS) and frequency domain (MNF, MDF, AIF), with 30%, 60% and 80% of MVC. The third case study, develops a protocol for the acquisition of sEMG signals with low density and low level of muscle contraction, with control of the rest, for the recognition of different hand gestures in healthy and amputees, evaluating 14 characteristics , 8 in time domain, and 5 in frequency domain and Fractal Dimension (FD), with several of their combinations, which were classified with computational techniques of artificial intelligence, such as fuzzy logic (FL) and artificial neural networks of MLP type. The results for the first case study, has demonstrated the usefulness of threshold predetermination as RMS and slope, acquired with the hybrid sensor (inclination + sEMG), improving the accuracity sense of positioning in proprioceptive analysis of the knee compared to a commercial electrogoniometer in combination with sEMG signal. The hybrid sensor also was applied to the control of a robotic wheelchair, using head movements for self-displacement of persons with tetraplegia, as well as autonomous manipulation of a mobile robot by people with cognitive and motor disabilities, which was obtained with training, whose performance in interacting with the robot was evaluated by GAS index. In the second case study, the results obtained for assessment of fatigue in people with fibromyalgia (FM)have indicated a relationship between increasing load and muscle pain, especially with 80% of MVC. The linear regression of algorithms RMS, ARV and MNF havshown in both the inclination (α ) and intercept (β) an expected trend in the control group, with positive linear relationship to characteristics in the time domain and negative characteristics to the frequency domain, with 60% MVC, and 60% of isometric segment of sEMG signal, which were obtained with 20 isotonic contractions during flexion-extension of biceps braquii (RMS α = 1.1319, β = 275 706; MNF α = -0470, β = 91 482). In the case of volunteers with FM, the N3 voluntary presented a behavior with the highest expected trend of muscular fatigue at 80% MVC and 60% of isometric segment, obtained during isotonic movement of biceps braquii (RMS α = 5.92 β = 113.33; MNF α = β = -1.21 96.96). Finally, the third case study, identified, with the MLP classifier, a success rate of 94.9% for six movements of individual fingers, including rest (category A), and 97.5% of success rate for seven movements, including: fingers, wrist and grip (category B), both cases, with a combination of features RMS, WL, MAV and ZC. On the other hand, the results obtained by amputee volunteers showed better results with features in time domain, compared to fractal dimension (DF), with success rates of 93.9% using combination RMS, WL and MAV characteristics for category A, and 95.4% of success rate with combination of RMS, WL, MAV and ZC in category B.Os avanços tecnológicos na última década permitiram o desenvolvimento de sistemas de processamento de informação com alta capacidade de armazenamento de dados. Estes avanços na linha de saúde têm evoluíram para o desenvolvimento de dispositivos para aplicações na Bioengenharia e Engenharia Biomédica, no auxílio à compreensão do comportamento fisiológico, diagnóstico, monitoramento, controle e tratamento de variadas alterações biológicas. Juntamente com os avanços tecnológicos, a quantidade e complexidade da informação é cada vez maior, em comparação com a utilidade e compreensão da mesma, representando, para diferentes áreas de conhecimento, um desafio na busca de alternativas viáveis que permitam utilizar os atributos dos sistemas biológicos no desenvolvimento de novas tecnologias para a melhoria da qualidade de vida dos seres humanos. Na atualidade, o desenvolvimento de protocolos de captura de sinais bioelétricos não invasivos está conformando uma opção viável para o diagnóstico de miopatias, reabilitação motora, análise biomecânica, desenvolvimento de Interface Homem-Máquina, e controle autônomo de dispositivos robóticos para pessoas com deficiência motora grave, entre outras aplicações. Em todos os casos, o auxílio de técnicas computacionais como processamento de sinais digitais (DSP), e novos algoritmos baseados em inteligência artificial, abriram a possibilidade de desenvolver técnicas de classificação para o reconhecimento de padrões que podem ser aplicadas na área de biotecnologia para a saúde. A presente tese de doutorado desenvolve protocolos e técnicas de análise de sinais mioelétricas (SME) por eletromiografia de superfície (sEMG) constituídos por “tarefas de atraso instruídas”, aplicados à avaliação motora e reabilitação, que envolve análise e critérios de inclusão-exclusão por anamnese clínica, controle de variáveis no ambiente experimental, captura, aquisição e transformação do sina, digitalização, filtragem, segementação, seleção de características, classificação e reconhecimento de padrões. As aplicações biotecnológicas com SME apresentam uma abordagem quantitativa experimental em forma de estudo de caso. O primeiro estudo de caso desenvolve três protocolos de aquisição para avaliação proprioceptiva do joelho, controle de uma cadeira de rodas robótica por pessoas com deficiência motora grave, e manipulação de um robô móvel por crianças com deficiência cognitiva e motora, utilizando um sensor híbrido (inclinação+sEMG), o qual conformou inclusive uma patente de invenção derivada da presente tese. O segundo estudo de caso desenvolve um protocolo de aquisição SME, para o auxílio ao diagnóstico de fibromialgia utilizando algoritmos para avaliação da fadiga muscular no domínio do tempo (ARV, RMS) e da frequência (MNF, MDF, AIF) com 30%, 60% e 80% de MVC. O terceiro estudo de caso desenvolve um protocolo de aquisição de SME de baixa densidade e baixo nível de contração muscular, com controle do repouso, para o reconhecimento de diferentes gestos da mão, em pessoas saudáveis e com amputação na região do terço distal do cotovelo, avaliando 14 características, 8 no domínio do tempo, 5 no domínio da frequência e Dimensão Fractal (FD), além de várias das sua combinações, as quais foram classificadas com técnicas computacionais de inteligênica artificial como lógica difusa (FL) e redes neurais artificiais do tipo MLP. Os resultados obtidos para o primeiro estudo de caso demonstrou a utilidade da predeterminação de limiares para as variáveis RMS e inclinação obtidas com o sensor híbrido (inclinação+sEMG), melhorando a precisão do senso de posicionamento na análise proprioceptiva do joelho em comparação com um eletrogoniômetro comercial em combinação com o SME. O sensor híbrido facilitou também o controle de uma cadeira de rodas robótica, utilizando o movimento da cabeça para o deslocamento autônomo de pessoas com tetraplegia, assim como, a manipulação autônoma de um robô móvel por pessoas com deficiência cognitiva e motora, os quais obtiveram, com o treinamento, um melhor desempenho na interação com o robô, avaliado pelo índice GAS. No segundo estudo de caso, os resultados obtidos para avaliação da fadiga em pessoas com fibromialgia (FM) indicaram uma relação entre o aumento da carga e a dor muscular, especialmente para 80% de MVC. A regressão linear dos algoritmos RMS, ARV e MNF apresentaram na inclinação (α) e intercepto (β) uma tendência esperada no grupo controle, com regressão linear positiva para características no domínio do tempo e negativas para características no domínio da frequência, para 60% de MVC e 60% do segmento isométrico do SME, obtidos com 20 contrações isotônicas durante a flexão extensão do bíceps braquii (RMS α=1.1319, β=275.706; MNF α=-0.470, β=91.482). No caso de voluntárias com FM, a voluntária N3 apresentou dados com maior relação de tendência esperada da fadiga muscular, para 80% de MVC e 60% do segmento isométrico obtidos durante movimento isotônico do bíceps braquii (RMS α=5,92 β=113,33; MNF α=-1,21 β=96,96). Por último, o terceiro estudo de caso identificou, com UM classificador MLP, e taxa de sucesso de 94,9% seis movimentos de dedos individuais, incluindo repouso, (categoria A), e com 97,5% de taxa de sucesso, sete movimentos que compreendem dedos, punho e agarre (categoria B), ambos os casos, com combinação de características RMS, WL,MAV e ZC. Por outro lado, resultados obtidos por voluntários amputados no terço distal do cotovelo, apresentaram melhores resultados com características no domínio do tempo, em comparação as que incluiram dimensão fractal (DF), com taxas de sucesso de 93,9%, utilizando combinação de características RMS, WL e MAV para a categoria A, e 95,4% de taxa de sucesso, com uma combinação de características RMS, WL, MAV e ZC na categoria B.CNPqTexthttp://repositorio.ufes.br/handle/10/1882porUniversidade Federal do Espírito SantoDoutorado em BiotecnologiaPrograma de Pós-Graduação em BiotecnologiaUFESBRCentro de Ciências da SaúdeSinais sEMGProcessamento de sinais biológicosAvaliação motoraRobóticaCapacidade motoraReabilitaçãoBiotecnologia61Protocolos e técnicas de análise de sinais sEMG aplicados à avaliação motora e robóticainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)instname:Universidade Federal do Espírito Santo (UFES)instacron:UFESCNPqORIGINALTeseDoutoradoCompleta.pdfTeseDoutoradoCompleta.pdfapplication/pdf11628770http://repositorio.ufes.br/bitstreams/5589680e-2eb6-4ce3-b0a0-18e2753042ee/download78cb42f5e620bb943765674da68b0c7eMD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.ufes.br/bitstreams/9cc4604d-6c9f-43ba-b018-d44085892746/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-822064http://repositorio.ufes.br/bitstreams/954857ca-b004-4081-9a83-9483b220a085/downloadef48816a10f2d45f2e2fee2f478e2fafMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823148http://repositorio.ufes.br/bitstreams/88a90236-6aa6-4358-ae91-044a36053881/download9da0b6dfac957114c6a7714714b86306MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufes.br/bitstreams/b3c28f7f-6feb-48fe-9b61-35a5d3ff1945/download8a4605be74aa9ea9d79846c1fba20a33MD5510/18822024-08-27 13:05:15.974oai:repositorio.ufes.br:10/1882http://repositorio.ufes.brRepositório InstitucionalPUBhttp://repositorio.ufes.br/oai/requestopendoar:21082024-10-15T18:01:19.221660Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)falseTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
dc.title.none.fl_str_mv Protocolos e técnicas de análise de sinais sEMG aplicados à avaliação motora e robótica
title Protocolos e técnicas de análise de sinais sEMG aplicados à avaliação motora e robótica
spellingShingle Protocolos e técnicas de análise de sinais sEMG aplicados à avaliação motora e robótica
Vela, Jhon Freddy Sarmiento
Sinais sEMG
Processamento de sinais biológicos
Avaliação motora
Biotecnologia
Robótica
Capacidade motora
Reabilitação
61
title_short Protocolos e técnicas de análise de sinais sEMG aplicados à avaliação motora e robótica
title_full Protocolos e técnicas de análise de sinais sEMG aplicados à avaliação motora e robótica
title_fullStr Protocolos e técnicas de análise de sinais sEMG aplicados à avaliação motora e robótica
title_full_unstemmed Protocolos e técnicas de análise de sinais sEMG aplicados à avaliação motora e robótica
title_sort Protocolos e técnicas de análise de sinais sEMG aplicados à avaliação motora e robótica
author Vela, Jhon Freddy Sarmiento
author_facet Vela, Jhon Freddy Sarmiento
author_role author
dc.contributor.advisor-co1.fl_str_mv Silva, Ian Victor
dc.contributor.advisor1.fl_str_mv Bastos Filho, Teodiano Freire
dc.contributor.author.fl_str_mv Vela, Jhon Freddy Sarmiento
dc.contributor.referee1.fl_str_mv Fernandes, Antonio Alberto Ribeiro
dc.contributor.referee2.fl_str_mv Nogueira, Breno Valentim
dc.contributor.referee3.fl_str_mv Guimarães, Marco César Cunegundes
dc.contributor.referee4.fl_str_mv Andrade, Adriano
contributor_str_mv Silva, Ian Victor
Bastos Filho, Teodiano Freire
Fernandes, Antonio Alberto Ribeiro
Nogueira, Breno Valentim
Guimarães, Marco César Cunegundes
Andrade, Adriano
dc.subject.por.fl_str_mv Sinais sEMG
Processamento de sinais biológicos
Avaliação motora
topic Sinais sEMG
Processamento de sinais biológicos
Avaliação motora
Biotecnologia
Robótica
Capacidade motora
Reabilitação
61
dc.subject.cnpq.fl_str_mv Biotecnologia
dc.subject.br-rjbn.none.fl_str_mv Robótica
Capacidade motora
Reabilitação
dc.subject.udc.none.fl_str_mv 61
description Technological advances in the last decade opened up the field for the development of information processing systems with high capacity of data storage. These advances in health have evolved in the development of devices for applications in Bioengineering and Biomedical Engineering, supporting the understanding of the physiological behavior, diagnosis, monitoring, treatment and control of various biological changes. Along with technological advances, the amount and complexity of information is increasing, compared to its usefulness and understanding, representing, for different areas of knowledge, a challenge to find viable alternatives for using the attributes of biological systems in the development of new technologies directed to improve the quality of life of human beings. Currently, the development of noninvasive protocols for capturing bioelectric signals are becoming a viable option for the diagnosis of myopathies, motor rehabilitation, biomechanical analysis, development of Human-Machine Interface, and autonomous control of robotic devices for people with severe motor disabilities among other applications. In all cases, the support of computational techniques, such as digital signal processing (DSP), and new algorithms based on artificial intelligence, has opened the opportunity to develop classification techniques for recognizing patterns which can be applied in biotechnology for health. This doctoral thesis develops protocols and techniques for analysis of sEMG signals, consisting of "instructed delay tasks", applied to the motor assessment and rehabilitation estrategies, involving analysis of inclusion-exclusion criteria for clinical history, control variables in experimental environment, capture, acquisition and processing of sEMG signal, digital group, filtering, segmentation, feature selection, classification and pattern recognition. Biotechnological applications with sEMG signals present a quantitative experimental approach in the form of case studies. The first case study is centered on three acquisition protocols for evaluation of proprioceptive knee, control of a robotic wheelchair for people with severe motor disabilities, and manipulation of a mobile robot for children with cognitive and motor disability, using a hybrid sensor (inclination + sEMG), which is a patent derivate of this thesis. The second case study, develops a protocol for acquisition of sEMG signals in order, to support the diagnosis of fibromyalgia using algorithms for evaluation of muscle fatigue in time domain (ARV, RMS) and frequency domain (MNF, MDF, AIF), with 30%, 60% and 80% of MVC. The third case study, develops a protocol for the acquisition of sEMG signals with low density and low level of muscle contraction, with control of the rest, for the recognition of different hand gestures in healthy and amputees, evaluating 14 characteristics , 8 in time domain, and 5 in frequency domain and Fractal Dimension (FD), with several of their combinations, which were classified with computational techniques of artificial intelligence, such as fuzzy logic (FL) and artificial neural networks of MLP type. The results for the first case study, has demonstrated the usefulness of threshold predetermination as RMS and slope, acquired with the hybrid sensor (inclination + sEMG), improving the accuracity sense of positioning in proprioceptive analysis of the knee compared to a commercial electrogoniometer in combination with sEMG signal. The hybrid sensor also was applied to the control of a robotic wheelchair, using head movements for self-displacement of persons with tetraplegia, as well as autonomous manipulation of a mobile robot by people with cognitive and motor disabilities, which was obtained with training, whose performance in interacting with the robot was evaluated by GAS index. In the second case study, the results obtained for assessment of fatigue in people with fibromyalgia (FM)have indicated a relationship between increasing load and muscle pain, especially with 80% of MVC. The linear regression of algorithms RMS, ARV and MNF havshown in both the inclination (α ) and intercept (β) an expected trend in the control group, with positive linear relationship to characteristics in the time domain and negative characteristics to the frequency domain, with 60% MVC, and 60% of isometric segment of sEMG signal, which were obtained with 20 isotonic contractions during flexion-extension of biceps braquii (RMS α = 1.1319, β = 275 706; MNF α = -0470, β = 91 482). In the case of volunteers with FM, the N3 voluntary presented a behavior with the highest expected trend of muscular fatigue at 80% MVC and 60% of isometric segment, obtained during isotonic movement of biceps braquii (RMS α = 5.92 β = 113.33; MNF α = β = -1.21 96.96). Finally, the third case study, identified, with the MLP classifier, a success rate of 94.9% for six movements of individual fingers, including rest (category A), and 97.5% of success rate for seven movements, including: fingers, wrist and grip (category B), both cases, with a combination of features RMS, WL, MAV and ZC. On the other hand, the results obtained by amputee volunteers showed better results with features in time domain, compared to fractal dimension (DF), with success rates of 93.9% using combination RMS, WL and MAV characteristics for category A, and 95.4% of success rate with combination of RMS, WL, MAV and ZC in category B.
publishDate 2013
dc.date.submitted.none.fl_str_mv 2013-12-16
dc.date.issued.fl_str_mv 2013-12-16
dc.date.accessioned.fl_str_mv 2016-05-16T14:15:50Z
dc.date.available.fl_str_mv 2016-06-24T06:00:05Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufes.br/handle/10/1882
url http://repositorio.ufes.br/handle/10/1882
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv Text
dc.publisher.none.fl_str_mv Universidade Federal do Espírito Santo
Doutorado em Biotecnologia
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Biotecnologia
dc.publisher.initials.fl_str_mv UFES
dc.publisher.country.fl_str_mv BR
dc.publisher.department.fl_str_mv Centro de Ciências da Saúde
publisher.none.fl_str_mv Universidade Federal do Espírito Santo
Doutorado em Biotecnologia
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
instname:Universidade Federal do Espírito Santo (UFES)
instacron:UFES
instname_str Universidade Federal do Espírito Santo (UFES)
instacron_str UFES
institution UFES
reponame_str Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
collection Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
bitstream.url.fl_str_mv http://repositorio.ufes.br/bitstreams/5589680e-2eb6-4ce3-b0a0-18e2753042ee/download
http://repositorio.ufes.br/bitstreams/9cc4604d-6c9f-43ba-b018-d44085892746/download
http://repositorio.ufes.br/bitstreams/954857ca-b004-4081-9a83-9483b220a085/download
http://repositorio.ufes.br/bitstreams/88a90236-6aa6-4358-ae91-044a36053881/download
http://repositorio.ufes.br/bitstreams/b3c28f7f-6feb-48fe-9b61-35a5d3ff1945/download
bitstream.checksum.fl_str_mv 78cb42f5e620bb943765674da68b0c7e
4afdbb8c545fd630ea7db775da747b2f
ef48816a10f2d45f2e2fee2f478e2faf
9da0b6dfac957114c6a7714714b86306
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)
repository.mail.fl_str_mv
_version_ 1813022569783099392