Classifier ensemble feature selection for automatic fault diagnosis

Detalhes bibliográficos
Autor(a) principal: Boldt, Francisco de Assis
Data de Publicação: 2017
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
Texto Completo: http://repositorio.ufes.br/handle/10/9872
Resumo: An efficient ensemble feature selection scheme applied for fault diagnosis is proposed, based on three hypothesis: a. A fault diagnosis system does not need to be restricted to a single feature extraction model, on the contrary, it should use as many feature models as possible, since the extracted features are potentially discriminative and the feature pooling is subsequently reduced with feature selection; b. The feature selection process can be accelerated, without loss of classification performance, combining feature selection methods, in a way that faster and weaker methods reduce the number of potentially non-discriminative features, sending to slower and stronger methods a filtered smaller feature set; c. The optimal feature set for a multi-class problem might be different for each pair of classes. Therefore, the feature selection should be done using an one versus one scheme, even when multi-class classifiers are used. However, since the number of classifiers grows exponentially to the number of the classes, expensive techniques like Error-Correcting Output Codes (ECOC) might have a prohibitive computational cost for large datasets. Thus, a fast one versus one approach must be used to alleviate such a computational demand. These three hypothesis are corroborated by experiments. The main hypothesis of this work is that using these three approaches together is possible to improve significantly the classification performance of a classifier to identify conditions in industrial processes. Experiments have shown such an improvement for the 1-NN classifier in industrial processes used as case study.
id UFES_d379a8b4adf321e25d265f887b276fae
oai_identifier_str oai:repositorio.ufes.br:10/9872
network_acronym_str UFES
network_name_str Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
repository_id_str 2108
spelling Varejão, Flávio MiguelRauber, Thomas WalterBoldt, Francisco de AssisSalles, Evandro Ottoni TeatiniCarvalho, André Carlos Ponce de Leon Ferreira deSantos, Thiago Oliveira dosConci, Aura2018-08-02T00:04:07Z2018-08-012018-08-02T00:04:07Z2017-07-14An efficient ensemble feature selection scheme applied for fault diagnosis is proposed, based on three hypothesis: a. A fault diagnosis system does not need to be restricted to a single feature extraction model, on the contrary, it should use as many feature models as possible, since the extracted features are potentially discriminative and the feature pooling is subsequently reduced with feature selection; b. The feature selection process can be accelerated, without loss of classification performance, combining feature selection methods, in a way that faster and weaker methods reduce the number of potentially non-discriminative features, sending to slower and stronger methods a filtered smaller feature set; c. The optimal feature set for a multi-class problem might be different for each pair of classes. Therefore, the feature selection should be done using an one versus one scheme, even when multi-class classifiers are used. However, since the number of classifiers grows exponentially to the number of the classes, expensive techniques like Error-Correcting Output Codes (ECOC) might have a prohibitive computational cost for large datasets. Thus, a fast one versus one approach must be used to alleviate such a computational demand. These three hypothesis are corroborated by experiments. The main hypothesis of this work is that using these three approaches together is possible to improve significantly the classification performance of a classifier to identify conditions in industrial processes. Experiments have shown such an improvement for the 1-NN classifier in industrial processes used as case study.ResumoTextBOLDT, Francisco de Assis. Classifier ensemble feature selection for automatic fault diagnosis. 2017. 112 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal do Espírito Santo, Centro Tecnológico, Vitória, 2017.http://repositorio.ufes.br/handle/10/9872engUniversidade Federal do Espírito SantoDoutorado em Ciência da ComputaçãoPrograma de Pós-Graduação em InformáticaUFESBRCentro TecnológicoClassifier ensembleFeature selectionAutomatic fault diagnosisSeleção de características (Computação)Localização de falhas (Engenharia)Classificadores (Linguistica)Ciência da Computação004Classifier ensemble feature selection for automatic fault diagnosisinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)instname:Universidade Federal do Espírito Santo (UFES)instacron:UFESORIGINALDoctor_thesis.pdfapplication/pdf2358608http://repositorio.ufes.br/bitstreams/0ecbcfcf-766c-4daa-a504-46f6341f0216/download6882526be259a3ef945f027bb764d17fMD5110/98722024-07-17 16:54:51.404oai:repositorio.ufes.br:10/9872http://repositorio.ufes.brRepositório InstitucionalPUBhttp://repositorio.ufes.br/oai/requestopendoar:21082024-10-15T18:01:28.565892Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)false
dc.title.none.fl_str_mv Classifier ensemble feature selection for automatic fault diagnosis
title Classifier ensemble feature selection for automatic fault diagnosis
spellingShingle Classifier ensemble feature selection for automatic fault diagnosis
Boldt, Francisco de Assis
Classifier ensemble
Feature selection
Automatic fault diagnosis
Seleção de características (Computação)
Ciência da Computação
Localização de falhas (Engenharia)
Classificadores (Linguistica)
004
title_short Classifier ensemble feature selection for automatic fault diagnosis
title_full Classifier ensemble feature selection for automatic fault diagnosis
title_fullStr Classifier ensemble feature selection for automatic fault diagnosis
title_full_unstemmed Classifier ensemble feature selection for automatic fault diagnosis
title_sort Classifier ensemble feature selection for automatic fault diagnosis
author Boldt, Francisco de Assis
author_facet Boldt, Francisco de Assis
author_role author
dc.contributor.advisor-co1.fl_str_mv Varejão, Flávio Miguel
dc.contributor.advisor1.fl_str_mv Rauber, Thomas Walter
dc.contributor.author.fl_str_mv Boldt, Francisco de Assis
dc.contributor.referee1.fl_str_mv Salles, Evandro Ottoni Teatini
dc.contributor.referee2.fl_str_mv Carvalho, André Carlos Ponce de Leon Ferreira de
dc.contributor.referee3.fl_str_mv Santos, Thiago Oliveira dos
dc.contributor.referee4.fl_str_mv Conci, Aura
contributor_str_mv Varejão, Flávio Miguel
Rauber, Thomas Walter
Salles, Evandro Ottoni Teatini
Carvalho, André Carlos Ponce de Leon Ferreira de
Santos, Thiago Oliveira dos
Conci, Aura
dc.subject.eng.fl_str_mv Classifier ensemble
Feature selection
Automatic fault diagnosis
topic Classifier ensemble
Feature selection
Automatic fault diagnosis
Seleção de características (Computação)
Ciência da Computação
Localização de falhas (Engenharia)
Classificadores (Linguistica)
004
dc.subject.por.fl_str_mv Seleção de características (Computação)
dc.subject.cnpq.fl_str_mv Ciência da Computação
dc.subject.br-rjbn.none.fl_str_mv Localização de falhas (Engenharia)
Classificadores (Linguistica)
dc.subject.udc.none.fl_str_mv 004
description An efficient ensemble feature selection scheme applied for fault diagnosis is proposed, based on three hypothesis: a. A fault diagnosis system does not need to be restricted to a single feature extraction model, on the contrary, it should use as many feature models as possible, since the extracted features are potentially discriminative and the feature pooling is subsequently reduced with feature selection; b. The feature selection process can be accelerated, without loss of classification performance, combining feature selection methods, in a way that faster and weaker methods reduce the number of potentially non-discriminative features, sending to slower and stronger methods a filtered smaller feature set; c. The optimal feature set for a multi-class problem might be different for each pair of classes. Therefore, the feature selection should be done using an one versus one scheme, even when multi-class classifiers are used. However, since the number of classifiers grows exponentially to the number of the classes, expensive techniques like Error-Correcting Output Codes (ECOC) might have a prohibitive computational cost for large datasets. Thus, a fast one versus one approach must be used to alleviate such a computational demand. These three hypothesis are corroborated by experiments. The main hypothesis of this work is that using these three approaches together is possible to improve significantly the classification performance of a classifier to identify conditions in industrial processes. Experiments have shown such an improvement for the 1-NN classifier in industrial processes used as case study.
publishDate 2017
dc.date.issued.fl_str_mv 2017-07-14
dc.date.accessioned.fl_str_mv 2018-08-02T00:04:07Z
dc.date.available.fl_str_mv 2018-08-01
2018-08-02T00:04:07Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv BOLDT, Francisco de Assis. Classifier ensemble feature selection for automatic fault diagnosis. 2017. 112 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal do Espírito Santo, Centro Tecnológico, Vitória, 2017.
dc.identifier.uri.fl_str_mv http://repositorio.ufes.br/handle/10/9872
identifier_str_mv BOLDT, Francisco de Assis. Classifier ensemble feature selection for automatic fault diagnosis. 2017. 112 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal do Espírito Santo, Centro Tecnológico, Vitória, 2017.
url http://repositorio.ufes.br/handle/10/9872
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv Text
dc.publisher.none.fl_str_mv Universidade Federal do Espírito Santo
Doutorado em Ciência da Computação
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Informática
dc.publisher.initials.fl_str_mv UFES
dc.publisher.country.fl_str_mv BR
dc.publisher.department.fl_str_mv Centro Tecnológico
publisher.none.fl_str_mv Universidade Federal do Espírito Santo
Doutorado em Ciência da Computação
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
instname:Universidade Federal do Espírito Santo (UFES)
instacron:UFES
instname_str Universidade Federal do Espírito Santo (UFES)
instacron_str UFES
institution UFES
reponame_str Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
collection Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
bitstream.url.fl_str_mv http://repositorio.ufes.br/bitstreams/0ecbcfcf-766c-4daa-a504-46f6341f0216/download
bitstream.checksum.fl_str_mv 6882526be259a3ef945f027bb764d17f
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)
repository.mail.fl_str_mv
_version_ 1813022571471306752