Classifier ensemble feature selection for automatic fault diagnosis
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
Texto Completo: | http://repositorio.ufes.br/handle/10/9872 |
Resumo: | An efficient ensemble feature selection scheme applied for fault diagnosis is proposed, based on three hypothesis: a. A fault diagnosis system does not need to be restricted to a single feature extraction model, on the contrary, it should use as many feature models as possible, since the extracted features are potentially discriminative and the feature pooling is subsequently reduced with feature selection; b. The feature selection process can be accelerated, without loss of classification performance, combining feature selection methods, in a way that faster and weaker methods reduce the number of potentially non-discriminative features, sending to slower and stronger methods a filtered smaller feature set; c. The optimal feature set for a multi-class problem might be different for each pair of classes. Therefore, the feature selection should be done using an one versus one scheme, even when multi-class classifiers are used. However, since the number of classifiers grows exponentially to the number of the classes, expensive techniques like Error-Correcting Output Codes (ECOC) might have a prohibitive computational cost for large datasets. Thus, a fast one versus one approach must be used to alleviate such a computational demand. These three hypothesis are corroborated by experiments. The main hypothesis of this work is that using these three approaches together is possible to improve significantly the classification performance of a classifier to identify conditions in industrial processes. Experiments have shown such an improvement for the 1-NN classifier in industrial processes used as case study. |
id |
UFES_d379a8b4adf321e25d265f887b276fae |
---|---|
oai_identifier_str |
oai:repositorio.ufes.br:10/9872 |
network_acronym_str |
UFES |
network_name_str |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
repository_id_str |
2108 |
spelling |
Varejão, Flávio MiguelRauber, Thomas WalterBoldt, Francisco de AssisSalles, Evandro Ottoni TeatiniCarvalho, André Carlos Ponce de Leon Ferreira deSantos, Thiago Oliveira dosConci, Aura2018-08-02T00:04:07Z2018-08-012018-08-02T00:04:07Z2017-07-14An efficient ensemble feature selection scheme applied for fault diagnosis is proposed, based on three hypothesis: a. A fault diagnosis system does not need to be restricted to a single feature extraction model, on the contrary, it should use as many feature models as possible, since the extracted features are potentially discriminative and the feature pooling is subsequently reduced with feature selection; b. The feature selection process can be accelerated, without loss of classification performance, combining feature selection methods, in a way that faster and weaker methods reduce the number of potentially non-discriminative features, sending to slower and stronger methods a filtered smaller feature set; c. The optimal feature set for a multi-class problem might be different for each pair of classes. Therefore, the feature selection should be done using an one versus one scheme, even when multi-class classifiers are used. However, since the number of classifiers grows exponentially to the number of the classes, expensive techniques like Error-Correcting Output Codes (ECOC) might have a prohibitive computational cost for large datasets. Thus, a fast one versus one approach must be used to alleviate such a computational demand. These three hypothesis are corroborated by experiments. The main hypothesis of this work is that using these three approaches together is possible to improve significantly the classification performance of a classifier to identify conditions in industrial processes. Experiments have shown such an improvement for the 1-NN classifier in industrial processes used as case study.ResumoTextBOLDT, Francisco de Assis. Classifier ensemble feature selection for automatic fault diagnosis. 2017. 112 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal do Espírito Santo, Centro Tecnológico, Vitória, 2017.http://repositorio.ufes.br/handle/10/9872engUniversidade Federal do Espírito SantoDoutorado em Ciência da ComputaçãoPrograma de Pós-Graduação em InformáticaUFESBRCentro TecnológicoClassifier ensembleFeature selectionAutomatic fault diagnosisSeleção de características (Computação)Localização de falhas (Engenharia)Classificadores (Linguistica)Ciência da Computação004Classifier ensemble feature selection for automatic fault diagnosisinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)instname:Universidade Federal do Espírito Santo (UFES)instacron:UFESORIGINALDoctor_thesis.pdfapplication/pdf2358608http://repositorio.ufes.br/bitstreams/0ecbcfcf-766c-4daa-a504-46f6341f0216/download6882526be259a3ef945f027bb764d17fMD5110/98722024-07-17 16:54:51.404oai:repositorio.ufes.br:10/9872http://repositorio.ufes.brRepositório InstitucionalPUBhttp://repositorio.ufes.br/oai/requestopendoar:21082024-10-15T18:01:28.565892Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)false |
dc.title.none.fl_str_mv |
Classifier ensemble feature selection for automatic fault diagnosis |
title |
Classifier ensemble feature selection for automatic fault diagnosis |
spellingShingle |
Classifier ensemble feature selection for automatic fault diagnosis Boldt, Francisco de Assis Classifier ensemble Feature selection Automatic fault diagnosis Seleção de características (Computação) Ciência da Computação Localização de falhas (Engenharia) Classificadores (Linguistica) 004 |
title_short |
Classifier ensemble feature selection for automatic fault diagnosis |
title_full |
Classifier ensemble feature selection for automatic fault diagnosis |
title_fullStr |
Classifier ensemble feature selection for automatic fault diagnosis |
title_full_unstemmed |
Classifier ensemble feature selection for automatic fault diagnosis |
title_sort |
Classifier ensemble feature selection for automatic fault diagnosis |
author |
Boldt, Francisco de Assis |
author_facet |
Boldt, Francisco de Assis |
author_role |
author |
dc.contributor.advisor-co1.fl_str_mv |
Varejão, Flávio Miguel |
dc.contributor.advisor1.fl_str_mv |
Rauber, Thomas Walter |
dc.contributor.author.fl_str_mv |
Boldt, Francisco de Assis |
dc.contributor.referee1.fl_str_mv |
Salles, Evandro Ottoni Teatini |
dc.contributor.referee2.fl_str_mv |
Carvalho, André Carlos Ponce de Leon Ferreira de |
dc.contributor.referee3.fl_str_mv |
Santos, Thiago Oliveira dos |
dc.contributor.referee4.fl_str_mv |
Conci, Aura |
contributor_str_mv |
Varejão, Flávio Miguel Rauber, Thomas Walter Salles, Evandro Ottoni Teatini Carvalho, André Carlos Ponce de Leon Ferreira de Santos, Thiago Oliveira dos Conci, Aura |
dc.subject.eng.fl_str_mv |
Classifier ensemble Feature selection Automatic fault diagnosis |
topic |
Classifier ensemble Feature selection Automatic fault diagnosis Seleção de características (Computação) Ciência da Computação Localização de falhas (Engenharia) Classificadores (Linguistica) 004 |
dc.subject.por.fl_str_mv |
Seleção de características (Computação) |
dc.subject.cnpq.fl_str_mv |
Ciência da Computação |
dc.subject.br-rjbn.none.fl_str_mv |
Localização de falhas (Engenharia) Classificadores (Linguistica) |
dc.subject.udc.none.fl_str_mv |
004 |
description |
An efficient ensemble feature selection scheme applied for fault diagnosis is proposed, based on three hypothesis: a. A fault diagnosis system does not need to be restricted to a single feature extraction model, on the contrary, it should use as many feature models as possible, since the extracted features are potentially discriminative and the feature pooling is subsequently reduced with feature selection; b. The feature selection process can be accelerated, without loss of classification performance, combining feature selection methods, in a way that faster and weaker methods reduce the number of potentially non-discriminative features, sending to slower and stronger methods a filtered smaller feature set; c. The optimal feature set for a multi-class problem might be different for each pair of classes. Therefore, the feature selection should be done using an one versus one scheme, even when multi-class classifiers are used. However, since the number of classifiers grows exponentially to the number of the classes, expensive techniques like Error-Correcting Output Codes (ECOC) might have a prohibitive computational cost for large datasets. Thus, a fast one versus one approach must be used to alleviate such a computational demand. These three hypothesis are corroborated by experiments. The main hypothesis of this work is that using these three approaches together is possible to improve significantly the classification performance of a classifier to identify conditions in industrial processes. Experiments have shown such an improvement for the 1-NN classifier in industrial processes used as case study. |
publishDate |
2017 |
dc.date.issued.fl_str_mv |
2017-07-14 |
dc.date.accessioned.fl_str_mv |
2018-08-02T00:04:07Z |
dc.date.available.fl_str_mv |
2018-08-01 2018-08-02T00:04:07Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
BOLDT, Francisco de Assis. Classifier ensemble feature selection for automatic fault diagnosis. 2017. 112 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal do Espírito Santo, Centro Tecnológico, Vitória, 2017. |
dc.identifier.uri.fl_str_mv |
http://repositorio.ufes.br/handle/10/9872 |
identifier_str_mv |
BOLDT, Francisco de Assis. Classifier ensemble feature selection for automatic fault diagnosis. 2017. 112 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal do Espírito Santo, Centro Tecnológico, Vitória, 2017. |
url |
http://repositorio.ufes.br/handle/10/9872 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
Text |
dc.publisher.none.fl_str_mv |
Universidade Federal do Espírito Santo Doutorado em Ciência da Computação |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Informática |
dc.publisher.initials.fl_str_mv |
UFES |
dc.publisher.country.fl_str_mv |
BR |
dc.publisher.department.fl_str_mv |
Centro Tecnológico |
publisher.none.fl_str_mv |
Universidade Federal do Espírito Santo Doutorado em Ciência da Computação |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) instname:Universidade Federal do Espírito Santo (UFES) instacron:UFES |
instname_str |
Universidade Federal do Espírito Santo (UFES) |
instacron_str |
UFES |
institution |
UFES |
reponame_str |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
collection |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
bitstream.url.fl_str_mv |
http://repositorio.ufes.br/bitstreams/0ecbcfcf-766c-4daa-a504-46f6341f0216/download |
bitstream.checksum.fl_str_mv |
6882526be259a3ef945f027bb764d17f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES) |
repository.mail.fl_str_mv |
|
_version_ |
1813022571471306752 |