Caracterização por citometria de fluxo das células de sangue, medula óssea e aorta de camundongos hipertensos

Detalhes bibliográficos
Autor(a) principal: Campagnaro, Bianca Prandi
Data de Publicação: 2012
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
Texto Completo: http://repositorio.ufes.br/handle/10/8051
Resumo: Angiotensin II has been recognized for a long time as a powerful vasoconstrictor. In addition, several studies have attributed a variety of other biological activities to this peptide, such as, cellular growth, proinflammatory and immunomodulator effects. However, some reports show that high angiotensin II levels increase reactive oxygen species (ROS) production and, consequently, apoptosis in target organs of the disease, the analysis of this peptide effect by flow cytometry remains unclear in the 2K1C model. The objective of this study was to evaluate the effects of 2K1C renovascular hypertension on blood, endothelium and bone marrow cells in mice. Experiments were conducted on male C57 mice (averaging 23 g), which were randomly separated in two groups: Sham (n=25) and two-kidney one-clip (2K1C, n=25). The renovascular 2K1C hypertension was induced by placing a stainless clip around the left renal artery. The Sham group was subjected to the same surgical procedure, without clip placement. Animals were studied 14 days later, when a catheter was inserted into the right carotid artery for direct arterial pressure measurements. Then, the animals were euthanized, and blood collected by heart puncture. After perfusion, endothelial cells were mechanically isolated from thoracic aorta and placed in warmed HBSS. Bone marrow cells were flushed out of tibias and femurs and placed in ice-cold PBS. Cells were counted using a Neubauer chamber. The identification of endothelial cells was determined by immunofluorescence detection after incubation with CD31-APC (5μl/106 cells). Oxidative stress was determined by H2O2 and O2•- production using the probes DHE and DCFH-DA, respectively. 106 cells were diluted with 1mL PBS and incubated with 20mM DCFHDA and 160µM DHE for 30 min at 37ºC in the dark, then washed and resuspended in 0.5ml of PBS. In order to analyze apoptosis, 106 cells were resuspended in Binding Buffer (BB) and incubated with 5µl of Annexin V-FITC and 5µl of propidium iodide (PI) at room temperature for 15 min in the dark and resuspended in 0.5ml of BB. To assay DNA content, 106 cells were fixed in ice-cold 70% ethanol and fixed at -20ºC. Cells were washed with ice-cold PBS and resuspended in 200μl of staining solution (20mg/ml RNAse, 500μg/ml PI, 10% Triton X-100). All cell preparations were stored on ice, and flow cytometric measurements were terminated within 4 hr. A FACSCanto II cytometer was used for the flow cytometric analysis. FSC and SSC were used to establish size gates and exclude cellular debris from the analysis. In each measurement, 30000 events were analyzed. Data were acquired and analyzed using the BD FACSDiva and FCS Express softwares. Data are means±SEM. Statistical analysis was performed with Student’s t test and Wilcoxon’s. As expected, blood pressure was higher in 2K1C than in Sham mice (Sham: 103±0.8 vs. 2K1C: 144±5.6 mmHg). Flow cytometric analysis showed that 2K1C mice presented a significant increase in O2• - production was higher in blood (Sham: 941±63 vs. 2K1C: 2155±289 a.u.), endothelial (Sham: 432±51 vs. 2K1C: 2630±184 a.u.) and bone marrow (Sham: 1309±175 vs. 2K1C: 12036±2205 a.u.) cells of 2K1C mice compared to Sham. Simultaneously, H2O2 production was also augmented in blood (Sham: 252±23 vs. 2K1C: 531±48 a.u.), endothelial (Sham: 300±30 vs. 2K1C: 1049±112 a.u.) and bone marrow (Sham: 2107±222 vs. 2K1C: 7517±1067 a.u.) cells of 2K1C mice compared to Sham. Apoptosis analysis by Annexin V-FITC/PI demonstrated that hypertensive mice presented higher percentages of apoptotic cells in blood (Q2Sham: 1.5±0.1 vs. Q22K1C: 15.3±3.8; Q4Sham: 1.6±0.2 vs. Q42K1C: 18.3±4.3 %), endothelial (Q2Sham: 1.2±0.2 vs. Q22K1C: 21.1±3.0; Q4Sham: 12.5±2.6 vs. Q42K1C: 31.2±2.4 %) and bone marrow (Q2Sham: 5.7±0.6 vs. Q22K1C: 22.5±2.5; Q4Sham: 12.9±1.1 vs. Q42K1C: 27.2±2.5 %) cells compared to Sham. DNA content analysis showed augmented DNA fragmentation in bone marrow cells of 2K1C (1.54±0.26 %) mice compared to Sham (0.50±0.09 %). Our data suggest that renovascular hypertension increases reactive oxygen species production leading to oxidative stress and, consequently, apoptosis in blood, endothelial and bone marrow cells of hypertensive mice. In addition, this model of experimental hypertension leads to DNA damage which could be due to augmented reactive oxygen species which is known to cause DNA fragmentation.
id UFES_e74605c99047a642e9152e8b46e80f6b
oai_identifier_str oai:repositorio.ufes.br:10/8051
network_acronym_str UFES
network_name_str Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
repository_id_str 2108
spelling Vasquez, Elisardo CorralMeyrelles, Silvana dos SantosCampagnaro, Bianca Prandidos Santos, LeonardoPereira, Thiago de Melo Costada Silva, Valdo José Dias2018-08-01T22:59:18Z2018-08-012018-08-01T22:59:18Z2012-12-07Angiotensin II has been recognized for a long time as a powerful vasoconstrictor. In addition, several studies have attributed a variety of other biological activities to this peptide, such as, cellular growth, proinflammatory and immunomodulator effects. However, some reports show that high angiotensin II levels increase reactive oxygen species (ROS) production and, consequently, apoptosis in target organs of the disease, the analysis of this peptide effect by flow cytometry remains unclear in the 2K1C model. The objective of this study was to evaluate the effects of 2K1C renovascular hypertension on blood, endothelium and bone marrow cells in mice. Experiments were conducted on male C57 mice (averaging 23 g), which were randomly separated in two groups: Sham (n=25) and two-kidney one-clip (2K1C, n=25). The renovascular 2K1C hypertension was induced by placing a stainless clip around the left renal artery. The Sham group was subjected to the same surgical procedure, without clip placement. Animals were studied 14 days later, when a catheter was inserted into the right carotid artery for direct arterial pressure measurements. Then, the animals were euthanized, and blood collected by heart puncture. After perfusion, endothelial cells were mechanically isolated from thoracic aorta and placed in warmed HBSS. Bone marrow cells were flushed out of tibias and femurs and placed in ice-cold PBS. Cells were counted using a Neubauer chamber. The identification of endothelial cells was determined by immunofluorescence detection after incubation with CD31-APC (5μl/106 cells). Oxidative stress was determined by H2O2 and O2•- production using the probes DHE and DCFH-DA, respectively. 106 cells were diluted with 1mL PBS and incubated with 20mM DCFHDA and 160µM DHE for 30 min at 37ºC in the dark, then washed and resuspended in 0.5ml of PBS. In order to analyze apoptosis, 106 cells were resuspended in Binding Buffer (BB) and incubated with 5µl of Annexin V-FITC and 5µl of propidium iodide (PI) at room temperature for 15 min in the dark and resuspended in 0.5ml of BB. To assay DNA content, 106 cells were fixed in ice-cold 70% ethanol and fixed at -20ºC. Cells were washed with ice-cold PBS and resuspended in 200μl of staining solution (20mg/ml RNAse, 500μg/ml PI, 10% Triton X-100). All cell preparations were stored on ice, and flow cytometric measurements were terminated within 4 hr. A FACSCanto II cytometer was used for the flow cytometric analysis. FSC and SSC were used to establish size gates and exclude cellular debris from the analysis. In each measurement, 30000 events were analyzed. Data were acquired and analyzed using the BD FACSDiva and FCS Express softwares. Data are means±SEM. Statistical analysis was performed with Student’s t test and Wilcoxon’s. As expected, blood pressure was higher in 2K1C than in Sham mice (Sham: 103±0.8 vs. 2K1C: 144±5.6 mmHg). Flow cytometric analysis showed that 2K1C mice presented a significant increase in O2• - production was higher in blood (Sham: 941±63 vs. 2K1C: 2155±289 a.u.), endothelial (Sham: 432±51 vs. 2K1C: 2630±184 a.u.) and bone marrow (Sham: 1309±175 vs. 2K1C: 12036±2205 a.u.) cells of 2K1C mice compared to Sham. Simultaneously, H2O2 production was also augmented in blood (Sham: 252±23 vs. 2K1C: 531±48 a.u.), endothelial (Sham: 300±30 vs. 2K1C: 1049±112 a.u.) and bone marrow (Sham: 2107±222 vs. 2K1C: 7517±1067 a.u.) cells of 2K1C mice compared to Sham. Apoptosis analysis by Annexin V-FITC/PI demonstrated that hypertensive mice presented higher percentages of apoptotic cells in blood (Q2Sham: 1.5±0.1 vs. Q22K1C: 15.3±3.8; Q4Sham: 1.6±0.2 vs. Q42K1C: 18.3±4.3 %), endothelial (Q2Sham: 1.2±0.2 vs. Q22K1C: 21.1±3.0; Q4Sham: 12.5±2.6 vs. Q42K1C: 31.2±2.4 %) and bone marrow (Q2Sham: 5.7±0.6 vs. Q22K1C: 22.5±2.5; Q4Sham: 12.9±1.1 vs. Q42K1C: 27.2±2.5 %) cells compared to Sham. DNA content analysis showed augmented DNA fragmentation in bone marrow cells of 2K1C (1.54±0.26 %) mice compared to Sham (0.50±0.09 %). Our data suggest that renovascular hypertension increases reactive oxygen species production leading to oxidative stress and, consequently, apoptosis in blood, endothelial and bone marrow cells of hypertensive mice. In addition, this model of experimental hypertension leads to DNA damage which could be due to augmented reactive oxygen species which is known to cause DNA fragmentation.A angiotensina II foi considerada durante muito tempo apenas como um hormônio vasoativo. Entretanto, sabe-se que além de um potente vasoconstritor, a angiotensina II apresenta funções biológicas importantes na regulação do crescimento e proliferação celular, além de atuar como imunomodulador indutor de respostas inflamatórias. Apesar de muitos estudos demonstrarem que a angiotensina II aumenta a produção de ROS, levando a ativação de mecanismos de apoptose em órgãos-alvo da hipertensão, pouco se sabe a respeito dos efeitos da hipertensão renovascular 2R1C sobre células hematopoiéticas e endoteliais. Por isso, este trabalho teve como objetivo avaliar os efeitos da hipertensão renovascular 2R1C sobre células sanguíneas, endoteliais e de medula óssea, por citometria de fluxo, em camundongos. Para isso, camundongos C57 machos (~23g) foram separados em dois grupos Sham (n=25) e 2R1C (n=25). A hipertensão foi induzida no grupo 2R1C pela colocação de um clipe de aço ao redor da artéria renal esquerda. O grupo Sham foi submetido ao mesmo procedimento cirúrgico, porém sem a colocação do clipe. Após 14 dias, os animais tiveram sua artéria carótida cateterizadas para medidas hemodinâmicas. Em seguida, os animais foram eutanasiados, e o sangue coletado por punção cardíaca. Após a perfusão, as células endoteliais foram mecanicamente isoladas da aorta torácica e mantidas em solução de HBSS. As células da medula óssea foram isoladas dos fêmures e tíbias e colocadas em DMEM. As células foram quantificadas em câmara de Neubauer. A identificação de células endoteliais foi realizada por imunofenotipagem utilizando o anticorpo CD31-APC (5μl/106 células). Para análise do estresse oxidativo 106 células foram diluídas em PBS e incubadas com 160μM de DHE e 20mM de DCFH-DA por 30 minutos a 37ºC no escuro e, depois lavadas e ressuspendidas em 0,5ml de PBSiFBS. Para a análise de apoptose 106 células foram ressuspendidas em tampão de ligação e incubadas com 5μl de anexina V-FITC e 5μl de iodeto de propídeo (PI) a temperatura ambiente, por 15 minutos, no escuro e foram ressuspendidas em 0,5ml de tampão de ligação. Para avaliar o conteúdo de DNA, 106 células foram fixadas em etanol 70% gelado, lavadas com PBS e ressuspendidas em 200μl de solução de coloração (20mg/ml RNAse, 500μg/ml PI, 10% Triton X-100). As amostras foram mantidas em gelo até o momento da aquisição dos dados pelo citômetro de fluxo FACSCanto II. Em cada experimento foram avaliadas 30000 células. Os dados foram analisados com o auxílio dos softwares BDFACSDiva e FCS Express 4.0. Os dados estão expressos como média±EPM e a análise estatística foi realizada por teste t de Student ou Wilcoxon. Como esperado os animais 2R1C apresentaram níveis maiores de pressão arterial (144±5,6 mmHg) quando comparados com os respectivos controles (103±0,8 mmHg). A análise por citometria de fluxo mostrou aumento na produção de O2• - nas células sanguíneas (Sham: 941±63 vs. 2R1C: 2155±289 a.u.), endoteliais (Sham: 432±51 vs. 2R1C: 2630±184 a.u.) e da medula óssea (Sham: 1309±175 vs. 2R1C: 12036±2205 a.u.) de animais 2R1C quando compara aos animais Sham. Simultaneamente, também observamos aumento na produção de H2O2 nas células sanguíneas (Sham: 252±23 vs. 2R1C: 531±48 a.u.), endoteliais (Sham: 300±30 vs. 2R1C: 1049±112 a.u.) e da medula óssea (Sham: 2107±222 vs. 2R1C: 7517±1067 a.u.) dos animais hipertensos comparado aos animais normotensos. A análise de apoptose pela marcação com AnexinaV-FITC/PI, mostrou que os animais hipertensos apresentam mais apoptose em células sanguíneas (Q2Sham: 1,5±0,1 vs. Q22R1C: 15,3±3,8; Q4Sham: 1,6±0,2 vs. Q42R1C: 18,3±4,3 %), endoteliais (Q2Sham: 1,2±0,2 vs. Q22R1C: 21,1±3,0; Q4Sham: 12,5±2,6 vs. Q42R1C: 31,2±2,4 %) e de medula óssea (Q2Sham: 5,7±0,6 vs. Q22R1C: 22,5±2,5; Q4Sham: 12,9±1,1 vs. Q42R1C: 27,2±2,5 %) nos animais do grupo 2R1C quando comparado aos Sham. Além disso, as células da medula óssea dos animais 2R1C (1,54±0,26 %) apresentaram aumento na fragmentação do DNA quando comparado com os animais Sham (0,50±0,09 %). Nossos resultados sugerem que a hipertensão renovascular 2R1C aumenta a produção de espécies reativas de oxigênio levando ao estresse oxidativo e, conseqüentemente a apoptose em células sanguíneas, endoteliais e de medula óssea isoladas de camundongos hipertensos. Além disso, neste modelo de hipertensão experimental as espécies reativas de oxigênio aumentadas interagem com o DNA das células, fragmentando-o.TextCAMPANARO, Bianca Prandi. Caracterização por citometria de fluxo das células de sangue, medula óssea e aorta de camundongos hipertensos. Tese (Doutorado em Ciências Fisiológicas) - Universidade Federal do Espírito Santo, Centro de Ciências da Saúde, Vitória, 2012.http://repositorio.ufes.br/handle/10/8051porUniversidade Federal do Espírito SantoDoutorado em Ciências FisiológicasPrograma de Pós-Graduação em Ciências FisiológicasUFESBRCentro de Ciências da SaúdeRenovascular hypertensionAngiotensin IIFlow cytometryROSApoptosisDNA fragmentationHipertensão renovascularAngiotensina IICitometria de fluxoApoptoseFragmentação do DNAFisiologia612Caracterização por citometria de fluxo das células de sangue, medula óssea e aorta de camundongos hipertensosFlow cytometric analysis of 2K1C renovascular hypertension on blood, endothelial, and bone marrow cells in miceinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)instname:Universidade Federal do Espírito Santo (UFES)instacron:UFESORIGINALTese Bianca Prandi Campagnaro.pdfapplication/pdf3180080http://repositorio.ufes.br/bitstreams/62355ee4-0ae8-491f-9045-5824e2ad84c7/download3dd52229da9217feb4c34047c23cb6a4MD5110/80512024-07-16 17:07:17.245oai:repositorio.ufes.br:10/8051http://repositorio.ufes.brRepositório InstitucionalPUBhttp://repositorio.ufes.br/oai/requestopendoar:21082024-10-15T17:55:19.973657Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)false
dc.title.none.fl_str_mv Caracterização por citometria de fluxo das células de sangue, medula óssea e aorta de camundongos hipertensos
dc.title.alternative.none.fl_str_mv Flow cytometric analysis of 2K1C renovascular hypertension on blood, endothelial, and bone marrow cells in mice
title Caracterização por citometria de fluxo das células de sangue, medula óssea e aorta de camundongos hipertensos
spellingShingle Caracterização por citometria de fluxo das células de sangue, medula óssea e aorta de camundongos hipertensos
Campagnaro, Bianca Prandi
Renovascular hypertension
Angiotensin II
Flow cytometry
ROS
Apoptosis
DNA fragmentation
Hipertensão renovascular
Angiotensina II
Citometria de fluxo
Apoptose
Fragmentação do DNA
Fisiologia
612
title_short Caracterização por citometria de fluxo das células de sangue, medula óssea e aorta de camundongos hipertensos
title_full Caracterização por citometria de fluxo das células de sangue, medula óssea e aorta de camundongos hipertensos
title_fullStr Caracterização por citometria de fluxo das células de sangue, medula óssea e aorta de camundongos hipertensos
title_full_unstemmed Caracterização por citometria de fluxo das células de sangue, medula óssea e aorta de camundongos hipertensos
title_sort Caracterização por citometria de fluxo das células de sangue, medula óssea e aorta de camundongos hipertensos
author Campagnaro, Bianca Prandi
author_facet Campagnaro, Bianca Prandi
author_role author
dc.contributor.advisor-co1.fl_str_mv Vasquez, Elisardo Corral
dc.contributor.advisor1.fl_str_mv Meyrelles, Silvana dos Santos
dc.contributor.author.fl_str_mv Campagnaro, Bianca Prandi
dc.contributor.referee1.fl_str_mv dos Santos, Leonardo
dc.contributor.referee2.fl_str_mv Pereira, Thiago de Melo Costa
dc.contributor.referee3.fl_str_mv da Silva, Valdo José Dias
contributor_str_mv Vasquez, Elisardo Corral
Meyrelles, Silvana dos Santos
dos Santos, Leonardo
Pereira, Thiago de Melo Costa
da Silva, Valdo José Dias
dc.subject.eng.fl_str_mv Renovascular hypertension
Angiotensin II
Flow cytometry
ROS
Apoptosis
DNA fragmentation
topic Renovascular hypertension
Angiotensin II
Flow cytometry
ROS
Apoptosis
DNA fragmentation
Hipertensão renovascular
Angiotensina II
Citometria de fluxo
Apoptose
Fragmentação do DNA
Fisiologia
612
dc.subject.por.fl_str_mv Hipertensão renovascular
Angiotensina II
Citometria de fluxo
Apoptose
Fragmentação do DNA
dc.subject.cnpq.fl_str_mv Fisiologia
dc.subject.udc.none.fl_str_mv 612
description Angiotensin II has been recognized for a long time as a powerful vasoconstrictor. In addition, several studies have attributed a variety of other biological activities to this peptide, such as, cellular growth, proinflammatory and immunomodulator effects. However, some reports show that high angiotensin II levels increase reactive oxygen species (ROS) production and, consequently, apoptosis in target organs of the disease, the analysis of this peptide effect by flow cytometry remains unclear in the 2K1C model. The objective of this study was to evaluate the effects of 2K1C renovascular hypertension on blood, endothelium and bone marrow cells in mice. Experiments were conducted on male C57 mice (averaging 23 g), which were randomly separated in two groups: Sham (n=25) and two-kidney one-clip (2K1C, n=25). The renovascular 2K1C hypertension was induced by placing a stainless clip around the left renal artery. The Sham group was subjected to the same surgical procedure, without clip placement. Animals were studied 14 days later, when a catheter was inserted into the right carotid artery for direct arterial pressure measurements. Then, the animals were euthanized, and blood collected by heart puncture. After perfusion, endothelial cells were mechanically isolated from thoracic aorta and placed in warmed HBSS. Bone marrow cells were flushed out of tibias and femurs and placed in ice-cold PBS. Cells were counted using a Neubauer chamber. The identification of endothelial cells was determined by immunofluorescence detection after incubation with CD31-APC (5μl/106 cells). Oxidative stress was determined by H2O2 and O2•- production using the probes DHE and DCFH-DA, respectively. 106 cells were diluted with 1mL PBS and incubated with 20mM DCFHDA and 160µM DHE for 30 min at 37ºC in the dark, then washed and resuspended in 0.5ml of PBS. In order to analyze apoptosis, 106 cells were resuspended in Binding Buffer (BB) and incubated with 5µl of Annexin V-FITC and 5µl of propidium iodide (PI) at room temperature for 15 min in the dark and resuspended in 0.5ml of BB. To assay DNA content, 106 cells were fixed in ice-cold 70% ethanol and fixed at -20ºC. Cells were washed with ice-cold PBS and resuspended in 200μl of staining solution (20mg/ml RNAse, 500μg/ml PI, 10% Triton X-100). All cell preparations were stored on ice, and flow cytometric measurements were terminated within 4 hr. A FACSCanto II cytometer was used for the flow cytometric analysis. FSC and SSC were used to establish size gates and exclude cellular debris from the analysis. In each measurement, 30000 events were analyzed. Data were acquired and analyzed using the BD FACSDiva and FCS Express softwares. Data are means±SEM. Statistical analysis was performed with Student’s t test and Wilcoxon’s. As expected, blood pressure was higher in 2K1C than in Sham mice (Sham: 103±0.8 vs. 2K1C: 144±5.6 mmHg). Flow cytometric analysis showed that 2K1C mice presented a significant increase in O2• - production was higher in blood (Sham: 941±63 vs. 2K1C: 2155±289 a.u.), endothelial (Sham: 432±51 vs. 2K1C: 2630±184 a.u.) and bone marrow (Sham: 1309±175 vs. 2K1C: 12036±2205 a.u.) cells of 2K1C mice compared to Sham. Simultaneously, H2O2 production was also augmented in blood (Sham: 252±23 vs. 2K1C: 531±48 a.u.), endothelial (Sham: 300±30 vs. 2K1C: 1049±112 a.u.) and bone marrow (Sham: 2107±222 vs. 2K1C: 7517±1067 a.u.) cells of 2K1C mice compared to Sham. Apoptosis analysis by Annexin V-FITC/PI demonstrated that hypertensive mice presented higher percentages of apoptotic cells in blood (Q2Sham: 1.5±0.1 vs. Q22K1C: 15.3±3.8; Q4Sham: 1.6±0.2 vs. Q42K1C: 18.3±4.3 %), endothelial (Q2Sham: 1.2±0.2 vs. Q22K1C: 21.1±3.0; Q4Sham: 12.5±2.6 vs. Q42K1C: 31.2±2.4 %) and bone marrow (Q2Sham: 5.7±0.6 vs. Q22K1C: 22.5±2.5; Q4Sham: 12.9±1.1 vs. Q42K1C: 27.2±2.5 %) cells compared to Sham. DNA content analysis showed augmented DNA fragmentation in bone marrow cells of 2K1C (1.54±0.26 %) mice compared to Sham (0.50±0.09 %). Our data suggest that renovascular hypertension increases reactive oxygen species production leading to oxidative stress and, consequently, apoptosis in blood, endothelial and bone marrow cells of hypertensive mice. In addition, this model of experimental hypertension leads to DNA damage which could be due to augmented reactive oxygen species which is known to cause DNA fragmentation.
publishDate 2012
dc.date.issued.fl_str_mv 2012-12-07
dc.date.accessioned.fl_str_mv 2018-08-01T22:59:18Z
dc.date.available.fl_str_mv 2018-08-01
2018-08-01T22:59:18Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv CAMPANARO, Bianca Prandi. Caracterização por citometria de fluxo das células de sangue, medula óssea e aorta de camundongos hipertensos. Tese (Doutorado em Ciências Fisiológicas) - Universidade Federal do Espírito Santo, Centro de Ciências da Saúde, Vitória, 2012.
dc.identifier.uri.fl_str_mv http://repositorio.ufes.br/handle/10/8051
identifier_str_mv CAMPANARO, Bianca Prandi. Caracterização por citometria de fluxo das células de sangue, medula óssea e aorta de camundongos hipertensos. Tese (Doutorado em Ciências Fisiológicas) - Universidade Federal do Espírito Santo, Centro de Ciências da Saúde, Vitória, 2012.
url http://repositorio.ufes.br/handle/10/8051
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv Text
dc.publisher.none.fl_str_mv Universidade Federal do Espírito Santo
Doutorado em Ciências Fisiológicas
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ciências Fisiológicas
dc.publisher.initials.fl_str_mv UFES
dc.publisher.country.fl_str_mv BR
dc.publisher.department.fl_str_mv Centro de Ciências da Saúde
publisher.none.fl_str_mv Universidade Federal do Espírito Santo
Doutorado em Ciências Fisiológicas
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
instname:Universidade Federal do Espírito Santo (UFES)
instacron:UFES
instname_str Universidade Federal do Espírito Santo (UFES)
instacron_str UFES
institution UFES
reponame_str Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
collection Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
bitstream.url.fl_str_mv http://repositorio.ufes.br/bitstreams/62355ee4-0ae8-491f-9045-5824e2ad84c7/download
bitstream.checksum.fl_str_mv 3dd52229da9217feb4c34047c23cb6a4
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)
repository.mail.fl_str_mv
_version_ 1813022527470960640