Métodos de projeção multidimensional

Detalhes bibliográficos
Autor(a) principal: Dal Col Júnior, Alcebíades
Data de Publicação: 2013
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
Texto Completo: http://repositorio.ufes.br/handle/10/7500
Resumo: The problem we are interested in solving comes from a area of knowledge called data visualization. In our studies, groups of objects are analyzed to produce the input data of our problem, each object is represented by attributes, have so a list of attributes for each object. The idea is to represent, through these lists of attributes, objects through points in R 2 so that we can conduct a group of objects. As we said each object is represented by a list of attributes, this may be interpreted as a point of a multidimensional space. For example, if they are considered m valued attributes for all objects can interpret them as points in a space of dimension m, or m-dimensional. But we want to produce a visualization of the data on the computer screen through points in R 2 , it was then performs a process known as multidimensional projection, that is obtaining points in a low dimensional space representing points in a high dimensional space preserving neighborhood relations as much as possible. Various methods of multidimensional projection are found in the literature. In this work, study and implement methods NNP, Force, LSP, PLP and LAMP. These methods deal with the problem in different ways: geometrically; linear systems, in particular, laplacian systems; and mappings related orthogonal. The lists of attributes associated with the groups of objects are called dataset. Two sets of data in this paper present trends grouping known a priori, therefore were used to give credibility to our implementations of the methods. Two other data set are studied and these were not provided with such feature, the methods of multidimensional projection are then used to define trends grouping for these two data sets.
id UFES_fad4ac155fa8023e3f61db3316edcdeb
oai_identifier_str oai:repositorio.ufes.br:10/7500
network_acronym_str UFES
network_name_str Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
repository_id_str 2108
spelling Carmo, Fabiano Petronetto doDal Col Júnior, AlcebíadesGonçalves Junior, EtereldesNonato, Luís Gustavo2018-08-01T22:30:13Z2018-08-012018-08-01T22:30:13Z2013-05-10The problem we are interested in solving comes from a area of knowledge called data visualization. In our studies, groups of objects are analyzed to produce the input data of our problem, each object is represented by attributes, have so a list of attributes for each object. The idea is to represent, through these lists of attributes, objects through points in R 2 so that we can conduct a group of objects. As we said each object is represented by a list of attributes, this may be interpreted as a point of a multidimensional space. For example, if they are considered m valued attributes for all objects can interpret them as points in a space of dimension m, or m-dimensional. But we want to produce a visualization of the data on the computer screen through points in R 2 , it was then performs a process known as multidimensional projection, that is obtaining points in a low dimensional space representing points in a high dimensional space preserving neighborhood relations as much as possible. Various methods of multidimensional projection are found in the literature. In this work, study and implement methods NNP, Force, LSP, PLP and LAMP. These methods deal with the problem in different ways: geometrically; linear systems, in particular, laplacian systems; and mappings related orthogonal. The lists of attributes associated with the groups of objects are called dataset. Two sets of data in this paper present trends grouping known a priori, therefore were used to give credibility to our implementations of the methods. Two other data set are studied and these were not provided with such feature, the methods of multidimensional projection are then used to define trends grouping for these two data sets.O problema que estamos interessados em resolver prov´em de uma ´area do conhecimento denominada visualiza¸c˜ao de dados. Nos nossos estudos, grupos de objetos s˜ao an´alisados para produzir os dados de entrada do nosso problema, cada um dos objetos ´e representado por atributos, temos assim uma lista de atributos para cada objeto. A ideia ´e representar, atrav´es dessas listas de atributos, os objetos atrav´es de pontos em R 2 para que possamos realizar um estudo do grupo de objetos. Como dissemos cada objeto ´e representado por uma lista de atributos, esta pode ser interpretada como um ponto de um espa¸co multidimensional. Por exemplo, se s˜ao considerados m atributos valorados para todos os objetos podemos interpret´a-los como sendo pontos de um espa¸co de dimens˜ao m, ou mdimensional. Mas, queremos produzir uma visualiza¸c˜ao dos dados na tela do computador atrav´es de pontos em R 2 , realiza-se ent˜ao um processo conhecido como proje¸c˜ao multidimensional, que ´e a obten¸c˜ao de pontos em um espa¸co de baixa dimens˜ao que represente pontos de um espa¸co de alta dimens˜ao preservando rela¸c˜oes de vizinha¸ca tanto quanto poss´ıvel. Diversos m´etodos de proje¸c˜ao multidimensional s˜ao encontrados na literatura. Neste trabalho, estudamos e implementamos os m´etodos NNP, Force, LSP, PLP e LAMP. Estes m´etodos abordam o problema de diferentes formas: geometricamente; sistemas lineares, em particular, sistemas laplacianos; e mapeamentos ortogonais afins. As listas de atributos associadas aos grupos de objetos recebem o nome de conjuntos de dados. Dois dos conjuntos de dados abordados neste trabalho apresentam tendˆencias de agrupamento conhecidas a priori, portanto foram utilizados para dar credibilidade as nossas implementa¸c˜oes dos m´etodos. Outros dois conjuntos de dados s˜ao estudados e esses n˜ao eram dotados de tal caracteristica, os m´etodos de proje¸c˜ao multidimensional s˜ao ent˜ao utilizados para definir tendˆencias de agrupamento para esses dois conjuntos de dados.Texthttp://repositorio.ufes.br/handle/10/7500porUniversidade Federal do Espírito SantoMestrado em MatemáticaPrograma de Pós-Graduação em MatemáticaUFESBRCentro de Ciências ExatasProjectionMatemática aplicadaVisualização de dadosMétodos de projeção multidimensionalMatemática51Métodos de projeção multidimensionalinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)instname:Universidade Federal do Espírito Santo (UFES)instacron:UFESORIGINALtese_6479_Dissertacao final 30-07-13.pdfapplication/pdf49238492http://repositorio.ufes.br/bitstreams/3150b36a-72cc-4a43-945d-ad8c27f2f8c1/download07a4d693e2715d4bc6a42c5bd87b7eecMD5110/75002024-06-30 16:36:54.883oai:repositorio.ufes.br:10/7500http://repositorio.ufes.brRepositório InstitucionalPUBhttp://repositorio.ufes.br/oai/requestopendoar:21082024-07-11T14:29:48.798200Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)false
dc.title.none.fl_str_mv Métodos de projeção multidimensional
title Métodos de projeção multidimensional
spellingShingle Métodos de projeção multidimensional
Dal Col Júnior, Alcebíades
Projection
Matemática aplicada
Visualização de dados
Métodos de projeção multidimensional
Matemática
51
title_short Métodos de projeção multidimensional
title_full Métodos de projeção multidimensional
title_fullStr Métodos de projeção multidimensional
title_full_unstemmed Métodos de projeção multidimensional
title_sort Métodos de projeção multidimensional
author Dal Col Júnior, Alcebíades
author_facet Dal Col Júnior, Alcebíades
author_role author
dc.contributor.advisor1.fl_str_mv Carmo, Fabiano Petronetto do
dc.contributor.author.fl_str_mv Dal Col Júnior, Alcebíades
dc.contributor.referee1.fl_str_mv Gonçalves Junior, Etereldes
dc.contributor.referee2.fl_str_mv Nonato, Luís Gustavo
contributor_str_mv Carmo, Fabiano Petronetto do
Gonçalves Junior, Etereldes
Nonato, Luís Gustavo
dc.subject.eng.fl_str_mv Projection
topic Projection
Matemática aplicada
Visualização de dados
Métodos de projeção multidimensional
Matemática
51
dc.subject.por.fl_str_mv Matemática aplicada
Visualização de dados
Métodos de projeção multidimensional
dc.subject.cnpq.fl_str_mv Matemática
dc.subject.udc.none.fl_str_mv 51
description The problem we are interested in solving comes from a area of knowledge called data visualization. In our studies, groups of objects are analyzed to produce the input data of our problem, each object is represented by attributes, have so a list of attributes for each object. The idea is to represent, through these lists of attributes, objects through points in R 2 so that we can conduct a group of objects. As we said each object is represented by a list of attributes, this may be interpreted as a point of a multidimensional space. For example, if they are considered m valued attributes for all objects can interpret them as points in a space of dimension m, or m-dimensional. But we want to produce a visualization of the data on the computer screen through points in R 2 , it was then performs a process known as multidimensional projection, that is obtaining points in a low dimensional space representing points in a high dimensional space preserving neighborhood relations as much as possible. Various methods of multidimensional projection are found in the literature. In this work, study and implement methods NNP, Force, LSP, PLP and LAMP. These methods deal with the problem in different ways: geometrically; linear systems, in particular, laplacian systems; and mappings related orthogonal. The lists of attributes associated with the groups of objects are called dataset. Two sets of data in this paper present trends grouping known a priori, therefore were used to give credibility to our implementations of the methods. Two other data set are studied and these were not provided with such feature, the methods of multidimensional projection are then used to define trends grouping for these two data sets.
publishDate 2013
dc.date.issued.fl_str_mv 2013-05-10
dc.date.accessioned.fl_str_mv 2018-08-01T22:30:13Z
dc.date.available.fl_str_mv 2018-08-01
2018-08-01T22:30:13Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufes.br/handle/10/7500
url http://repositorio.ufes.br/handle/10/7500
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv Text
dc.publisher.none.fl_str_mv Universidade Federal do Espírito Santo
Mestrado em Matemática
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Matemática
dc.publisher.initials.fl_str_mv UFES
dc.publisher.country.fl_str_mv BR
dc.publisher.department.fl_str_mv Centro de Ciências Exatas
publisher.none.fl_str_mv Universidade Federal do Espírito Santo
Mestrado em Matemática
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
instname:Universidade Federal do Espírito Santo (UFES)
instacron:UFES
instname_str Universidade Federal do Espírito Santo (UFES)
instacron_str UFES
institution UFES
reponame_str Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
collection Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)
bitstream.url.fl_str_mv http://repositorio.ufes.br/bitstreams/3150b36a-72cc-4a43-945d-ad8c27f2f8c1/download
bitstream.checksum.fl_str_mv 07a4d693e2715d4bc6a42c5bd87b7eec
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)
repository.mail.fl_str_mv
_version_ 1813022599879327744