AN ENGINEERING MODEL BASED ON ONTOLOGY AND PROBABILISTIC CALCULATION TO SUPPORT THE DIAGNOSIS

Detalhes bibliográficos
Autor(a) principal: Lopes, Luiz Fernando
Data de Publicação: 2012
Outros Autores: Gonçalves, Alexandre Leopoldo, Todesco, José Leomar
Tipo de documento: Artigo
Idioma: por
Título da fonte: Sistemas & Gestão
Texto Completo: https://www.revistasg.uff.br/sg/article/view/V6N3A4
Resumo: The diagnosis, as knowledge-intensive task, is a complex process since there is a wide variety ofelements and circumstances to be considered for a decision-making. Uncertainty generated by the subjectivity,vagueness and/or lack of updated information exist in almost all stages and interfere for the safety and efficacyin the outcome. The data and useful information, when collected and treated appropriately, deriving fromdiagnosis accomplished and which remain latent (unobserved/asleep), can become a valuable source ofknowledge if associated with the experience and observation of the individual who uses them. The goal ofthis article is to propose a model of Knowledge Engineering that allows the creation of new knowledge tosupport the diagnosis process. The methods and techniques of Knowledge Engineering, used on this model tosupport the process are: CommonKADS, Ontology, Probabilistic Calculation and Discovery Systems Basedon Literature. Through the integration of these elements, the proposed model is applied to a didactic examplewhich allows evidence to be highlighted and analyzed through research literature as potential new knowledge.After the information of a new knowledge, the inference process is updated. It is concluded, therefore, thatthrough this research, the proposed model meets the requirements for the generation of new knowledge, andcontributes to the improvement of the diagnostic test.
id UFF-13_4e5a9fb771fd587f1fdb6a179b5269e9
oai_identifier_str oai:ojs.www.revistasg.uff.br:article/176
network_acronym_str UFF-13
network_name_str Sistemas & Gestão
repository_id_str
spelling AN ENGINEERING MODEL BASED ON ONTOLOGY AND PROBABILISTIC CALCULATION TO SUPPORT THE DIAGNOSISAN ENGINEERING MODEL BASED ON ONTOLOGY AND PROBABILISTIC CALCULATION TO SUPPORT THE DIAGNOSISUm Modelo de Engenharia do Conhecimento Baseado em Ontologia e Cálculo Probabilístico para Apoio ao DiagnósticoKnowledge EngineeringKnowledge Based SystemsDiagnosisOntologyProbabilistic CalculationKnowledge EngineeringKnowledge Based SystemsDiagnosisOntologyProbabilistic CalculationEngenharia do Conhecimento. Sistemas Baseados em Conhecimento. Diagnóstico. Ontologia. Cálculo Probabilístico.Gestão da TecnologiaSistemas de InformaçãoThe diagnosis, as knowledge-intensive task, is a complex process since there is a wide variety ofelements and circumstances to be considered for a decision-making. Uncertainty generated by the subjectivity,vagueness and/or lack of updated information exist in almost all stages and interfere for the safety and efficacyin the outcome. The data and useful information, when collected and treated appropriately, deriving fromdiagnosis accomplished and which remain latent (unobserved/asleep), can become a valuable source ofknowledge if associated with the experience and observation of the individual who uses them. The goal ofthis article is to propose a model of Knowledge Engineering that allows the creation of new knowledge tosupport the diagnosis process. The methods and techniques of Knowledge Engineering, used on this model tosupport the process are: CommonKADS, Ontology, Probabilistic Calculation and Discovery Systems Basedon Literature. Through the integration of these elements, the proposed model is applied to a didactic examplewhich allows evidence to be highlighted and analyzed through research literature as potential new knowledge.After the information of a new knowledge, the inference process is updated. It is concluded, therefore, thatthrough this research, the proposed model meets the requirements for the generation of new knowledge, andcontributes to the improvement of the diagnostic test.The diagnosis, as knowledge-intensive task, is a complex process since there is a wide variety ofelements and circumstances to be considered for a decision-making. Uncertainty generated by the subjectivity,vagueness and/or lack of updated information exist in almost all stages and interfere for the safety and efficacyin the outcome. The data and useful information, when collected and treated appropriately, deriving fromdiagnosis accomplished and which remain latent (unobserved/asleep), can become a valuable source ofknowledge if associated with the experience and observation of the individual who uses them. The goal ofthis article is to propose a model of Knowledge Engineering that allows the creation of new knowledge tosupport the diagnosis process. The methods and techniques of Knowledge Engineering, used on this model tosupport the process are: CommonKADS, Ontology, Probabilistic Calculation and Discovery Systems Basedon Literature. Through the integration of these elements, the proposed model is applied to a didactic examplewhich allows evidence to be highlighted and analyzed through research literature as potential new knowledge.After the information of a new knowledge, the inference process is updated. It is concluded, therefore, thatthrough this research, the proposed model meets the requirements for the generation of new knowledge, andcontributes to the improvement of the diagnostic test. O diagnóstico, como tarefa intensiva em conhecimento, é um processo complexo uma vez que existe uma grande variedade de elementos e circunstâncias a serem considerados para uma tomada de decisão. Incertezas geradas pela subjetividade, imprecisão e/ou falta de informações atualizadas existem em quase todos os estágios e interferem quanto à segurança e eficácia no resultado. Os dados e informações úteis, quando coletados e tratados adequadamente, provenientes de diagnósticos realizados e que permanecem em estado latente (despercebidos / adormecidos), podem tornar-se uma valiosa fonte de conhecimento se associados à experiência e observação do profissional que os utiliza. Assim, o objetivo deste artigo é propor um modelo de Engenharia do Conhecimento que possibilita a geração de novos conhecimentos para apoiar o processo de diagnóstico. As metodologias, métodos e técnicas da Engenharia do Conhecimento, utilizados neste modelo para apoiar este processo, são: CommonKADS, Ontologia, Cálculo Probabilístico e Sistemas de Descoberta Baseados na Literatura. Através da integração entre esses elementos, o modelo proposto é aplicado em um exemplo didático, o qual possibilita que evidências sejam destacadas e analisadas através de pesquisa literária como possíveis novos conhecimentos. Após a confirmação de um novo conhecimento, o processo de inferência é atualizado. Conclui-se, portanto, que, através desta pesquisa, o modelo proposto atende os requisitos para a geração de novos conhecimentos e contribui para o aperfeiçoamento da tarefa de diagnóstico.ABEC2012-05-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPrototipagemapplication/pdfhttps://www.revistasg.uff.br/sg/article/view/V6N3A410.7177/sg.2011.V6.N3.A4Sistemas & Gestão; v. 6 n. 3 (2011): Outubro/2011; 272-2931980-516010.7177/sg.2011.v6.n3reponame:Sistemas & Gestãoinstname:Universidade Federal Fluminense (UFF)instacron:UFFporhttps://www.revistasg.uff.br/sg/article/view/V6N3A4/V6N3A4Copyright (c) 2015 Sistemas & Gestãoinfo:eu-repo/semantics/openAccessLopes, Luiz FernandoGonçalves, Alexandre LeopoldoTodesco, José Leomar2023-01-09T18:18:58Zoai:ojs.www.revistasg.uff.br:article/176Revistahttps://www.revistasg.uff.br/sgPUBhttps://www.revistasg.uff.br/sg/oai||sg.revista@gmail.com|| periodicos@proppi.uff.br1980-51601980-5160opendoar:2023-01-09T18:18:58Sistemas & Gestão - Universidade Federal Fluminense (UFF)false
dc.title.none.fl_str_mv AN ENGINEERING MODEL BASED ON ONTOLOGY AND PROBABILISTIC CALCULATION TO SUPPORT THE DIAGNOSIS
AN ENGINEERING MODEL BASED ON ONTOLOGY AND PROBABILISTIC CALCULATION TO SUPPORT THE DIAGNOSIS
Um Modelo de Engenharia do Conhecimento Baseado em Ontologia e Cálculo Probabilístico para Apoio ao Diagnóstico
title AN ENGINEERING MODEL BASED ON ONTOLOGY AND PROBABILISTIC CALCULATION TO SUPPORT THE DIAGNOSIS
spellingShingle AN ENGINEERING MODEL BASED ON ONTOLOGY AND PROBABILISTIC CALCULATION TO SUPPORT THE DIAGNOSIS
Lopes, Luiz Fernando
Knowledge Engineering
Knowledge Based Systems
Diagnosis
Ontology
Probabilistic Calculation
Knowledge Engineering
Knowledge Based Systems
Diagnosis
Ontology
Probabilistic Calculation
Engenharia do Conhecimento. Sistemas Baseados em Conhecimento. Diagnóstico. Ontologia. Cálculo Probabilístico.
Gestão da Tecnologia
Sistemas de Informação
title_short AN ENGINEERING MODEL BASED ON ONTOLOGY AND PROBABILISTIC CALCULATION TO SUPPORT THE DIAGNOSIS
title_full AN ENGINEERING MODEL BASED ON ONTOLOGY AND PROBABILISTIC CALCULATION TO SUPPORT THE DIAGNOSIS
title_fullStr AN ENGINEERING MODEL BASED ON ONTOLOGY AND PROBABILISTIC CALCULATION TO SUPPORT THE DIAGNOSIS
title_full_unstemmed AN ENGINEERING MODEL BASED ON ONTOLOGY AND PROBABILISTIC CALCULATION TO SUPPORT THE DIAGNOSIS
title_sort AN ENGINEERING MODEL BASED ON ONTOLOGY AND PROBABILISTIC CALCULATION TO SUPPORT THE DIAGNOSIS
author Lopes, Luiz Fernando
author_facet Lopes, Luiz Fernando
Gonçalves, Alexandre Leopoldo
Todesco, José Leomar
author_role author
author2 Gonçalves, Alexandre Leopoldo
Todesco, José Leomar
author2_role author
author
dc.contributor.author.fl_str_mv Lopes, Luiz Fernando
Gonçalves, Alexandre Leopoldo
Todesco, José Leomar
dc.subject.por.fl_str_mv Knowledge Engineering
Knowledge Based Systems
Diagnosis
Ontology
Probabilistic Calculation
Knowledge Engineering
Knowledge Based Systems
Diagnosis
Ontology
Probabilistic Calculation
Engenharia do Conhecimento. Sistemas Baseados em Conhecimento. Diagnóstico. Ontologia. Cálculo Probabilístico.
Gestão da Tecnologia
Sistemas de Informação
topic Knowledge Engineering
Knowledge Based Systems
Diagnosis
Ontology
Probabilistic Calculation
Knowledge Engineering
Knowledge Based Systems
Diagnosis
Ontology
Probabilistic Calculation
Engenharia do Conhecimento. Sistemas Baseados em Conhecimento. Diagnóstico. Ontologia. Cálculo Probabilístico.
Gestão da Tecnologia
Sistemas de Informação
description The diagnosis, as knowledge-intensive task, is a complex process since there is a wide variety ofelements and circumstances to be considered for a decision-making. Uncertainty generated by the subjectivity,vagueness and/or lack of updated information exist in almost all stages and interfere for the safety and efficacyin the outcome. The data and useful information, when collected and treated appropriately, deriving fromdiagnosis accomplished and which remain latent (unobserved/asleep), can become a valuable source ofknowledge if associated with the experience and observation of the individual who uses them. The goal ofthis article is to propose a model of Knowledge Engineering that allows the creation of new knowledge tosupport the diagnosis process. The methods and techniques of Knowledge Engineering, used on this model tosupport the process are: CommonKADS, Ontology, Probabilistic Calculation and Discovery Systems Basedon Literature. Through the integration of these elements, the proposed model is applied to a didactic examplewhich allows evidence to be highlighted and analyzed through research literature as potential new knowledge.After the information of a new knowledge, the inference process is updated. It is concluded, therefore, thatthrough this research, the proposed model meets the requirements for the generation of new knowledge, andcontributes to the improvement of the diagnostic test.
publishDate 2012
dc.date.none.fl_str_mv 2012-05-30
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Prototipagem
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.revistasg.uff.br/sg/article/view/V6N3A4
10.7177/sg.2011.V6.N3.A4
url https://www.revistasg.uff.br/sg/article/view/V6N3A4
identifier_str_mv 10.7177/sg.2011.V6.N3.A4
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://www.revistasg.uff.br/sg/article/view/V6N3A4/V6N3A4
dc.rights.driver.fl_str_mv Copyright (c) 2015 Sistemas & Gestão
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2015 Sistemas & Gestão
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv ABEC
publisher.none.fl_str_mv ABEC
dc.source.none.fl_str_mv Sistemas & Gestão; v. 6 n. 3 (2011): Outubro/2011; 272-293
1980-5160
10.7177/sg.2011.v6.n3
reponame:Sistemas & Gestão
instname:Universidade Federal Fluminense (UFF)
instacron:UFF
instname_str Universidade Federal Fluminense (UFF)
instacron_str UFF
institution UFF
reponame_str Sistemas & Gestão
collection Sistemas & Gestão
repository.name.fl_str_mv Sistemas & Gestão - Universidade Federal Fluminense (UFF)
repository.mail.fl_str_mv ||sg.revista@gmail.com|| periodicos@proppi.uff.br
_version_ 1798320142789115904