Automatic Aggregation of Classes in the Decision Attributes in Applications of Dominance-based Rough Sets
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Sistemas & Gestão |
Texto Completo: | https://www.revistasg.uff.br/sg/article/view/V8N1A6 |
Resumo: | Rough Sets Theory has its already large utility enhanced when a probabilistic approach is introduced in the applications with attributes presenting dominance relations (DRSA). Methods are here proposed to improve the quality of approximation, the number of reducts and the variety of decision rules in DRSA, based on the aggregation of classes of values of the decision attribute. The forms of aggregation proposed may be used in conjunction with other already known alternatives to DRSA. While these other strategies to elevate the value of the index of quality of approximation take into account only the cardinality of classes and border regions, the approach developed here employs also the distance between them. Two aggregation proposals are presented, one based on probability density and the other on probability of attaining extreme values. Keywords: Rough Sets - Quality of Approximation - Dominance - Probability - Aggregation of Classes |
id |
UFF-13_7491bbc1bec6b24f6bb94001e80d084a |
---|---|
oai_identifier_str |
oai:ojs.www.revistasg.uff.br:article/363 |
network_acronym_str |
UFF-13 |
network_name_str |
Sistemas & Gestão |
repository_id_str |
|
spelling |
Automatic Aggregation of Classes in the Decision Attributes in Applications of Dominance-based Rough SetsAutomatic Aggregation of Classes in the Decision Attributes in Applications of Dominance-based Rough SetsAgregação Automática de Classes nos Atributos de Decisão em Aplicações de Rough Sets com DominânciaRough Sets Theory has its already large utility enhanced when a probabilistic approach is introduced in the applications with attributes presenting dominance relations (DRSA). Methods are here proposed to improve the quality of approximation, the number of reducts and the variety of decision rules in DRSA, based on the aggregation of classes of values of the decision attribute. The forms of aggregation proposed may be used in conjunction with other already known alternatives to DRSA. While these other strategies to elevate the value of the index of quality of approximation take into account only the cardinality of classes and border regions, the approach developed here employs also the distance between them. Two aggregation proposals are presented, one based on probability density and the other on probability of attaining extreme values. Keywords: Rough Sets - Quality of Approximation - Dominance - Probability - Aggregation of ClassesRough Sets Theory has its already large utility enhanced when a probabilistic approach is introduced in the applications with attributes presenting dominance relations (DRSA). Methods are here proposed to improve the quality of approximation, the number of reducts and the variety of decision rules in DRSA, based on the aggregation of classes of values of the decision attribute. The forms of aggregation proposed may be used in conjunction with other already known alternatives to DRSA. While these other strategies to elevate the value of the index of quality of approximation take into account only the cardinality of classes and border regions, the approach developed here employs also the distance between them. Two aggregation proposals are presented, one based on probability density and the other on probability of attaining extreme values. Keywords: Rough Sets - Quality of Approximation - Dominance - Probability - Aggregation of ClassesA Teoria dos Conjuntos Aproximativos tem seu já elevado potencial de utilização ampliado quando se introduz uma abordagem probabilística nas aplicações com relação de dominância (DRSA). Aqui são propostos métodos para elevar a qualidade da aproximação, o número de reduções e a variedade de regras de decisão em DRSA, baseados na agregação de classes segundo o atributo de decisão. As formas de agregação propostas podem ser usadas em conjunto com as outras alternativas à DRSA já conhecidas. Enquanto essas outras estratégias, para elevar o valor do índice de qualidade da aproximação, levam em conta, apenas, as cardinalidades das classes e das regiões de fronteira, a abordagem aqui desenvolvida emprega também a distância entre elas. Duas propostas de agregação são apresentadas, uma baseada em densidade de probabilidade e outra em probabilidade de atingir valores extremos.ABEC2013-01-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://www.revistasg.uff.br/sg/article/view/V8N1A610.7177/sg.2013.V8.N1.A6Sistemas & Gestão; v. 8 n. 1 (2013): Março/2013; 68-761980-516010.7177/sg.2013.v8.n1reponame:Sistemas & Gestãoinstname:Universidade Federal Fluminense (UFF)instacron:UFFporhttps://www.revistasg.uff.br/sg/article/view/V8N1A6/V8N1A6Copyright (c) 2015 Sistemas & Gestãoinfo:eu-repo/semantics/openAccessSant'Anna, Annibal ParrachoMalheiros Moreira Filho, Roberto2023-01-09T18:18:59Zoai:ojs.www.revistasg.uff.br:article/363Revistahttps://www.revistasg.uff.br/sgPUBhttps://www.revistasg.uff.br/sg/oai||sg.revista@gmail.com|| periodicos@proppi.uff.br1980-51601980-5160opendoar:2023-01-09T18:18:59Sistemas & Gestão - Universidade Federal Fluminense (UFF)false |
dc.title.none.fl_str_mv |
Automatic Aggregation of Classes in the Decision Attributes in Applications of Dominance-based Rough Sets Automatic Aggregation of Classes in the Decision Attributes in Applications of Dominance-based Rough Sets Agregação Automática de Classes nos Atributos de Decisão em Aplicações de Rough Sets com Dominância |
title |
Automatic Aggregation of Classes in the Decision Attributes in Applications of Dominance-based Rough Sets |
spellingShingle |
Automatic Aggregation of Classes in the Decision Attributes in Applications of Dominance-based Rough Sets Sant'Anna, Annibal Parracho |
title_short |
Automatic Aggregation of Classes in the Decision Attributes in Applications of Dominance-based Rough Sets |
title_full |
Automatic Aggregation of Classes in the Decision Attributes in Applications of Dominance-based Rough Sets |
title_fullStr |
Automatic Aggregation of Classes in the Decision Attributes in Applications of Dominance-based Rough Sets |
title_full_unstemmed |
Automatic Aggregation of Classes in the Decision Attributes in Applications of Dominance-based Rough Sets |
title_sort |
Automatic Aggregation of Classes in the Decision Attributes in Applications of Dominance-based Rough Sets |
author |
Sant'Anna, Annibal Parracho |
author_facet |
Sant'Anna, Annibal Parracho Malheiros Moreira Filho, Roberto |
author_role |
author |
author2 |
Malheiros Moreira Filho, Roberto |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Sant'Anna, Annibal Parracho Malheiros Moreira Filho, Roberto |
description |
Rough Sets Theory has its already large utility enhanced when a probabilistic approach is introduced in the applications with attributes presenting dominance relations (DRSA). Methods are here proposed to improve the quality of approximation, the number of reducts and the variety of decision rules in DRSA, based on the aggregation of classes of values of the decision attribute. The forms of aggregation proposed may be used in conjunction with other already known alternatives to DRSA. While these other strategies to elevate the value of the index of quality of approximation take into account only the cardinality of classes and border regions, the approach developed here employs also the distance between them. Two aggregation proposals are presented, one based on probability density and the other on probability of attaining extreme values. Keywords: Rough Sets - Quality of Approximation - Dominance - Probability - Aggregation of Classes |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-01-04 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.revistasg.uff.br/sg/article/view/V8N1A6 10.7177/sg.2013.V8.N1.A6 |
url |
https://www.revistasg.uff.br/sg/article/view/V8N1A6 |
identifier_str_mv |
10.7177/sg.2013.V8.N1.A6 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://www.revistasg.uff.br/sg/article/view/V8N1A6/V8N1A6 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2015 Sistemas & Gestão info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2015 Sistemas & Gestão |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
ABEC |
publisher.none.fl_str_mv |
ABEC |
dc.source.none.fl_str_mv |
Sistemas & Gestão; v. 8 n. 1 (2013): Março/2013; 68-76 1980-5160 10.7177/sg.2013.v8.n1 reponame:Sistemas & Gestão instname:Universidade Federal Fluminense (UFF) instacron:UFF |
instname_str |
Universidade Federal Fluminense (UFF) |
instacron_str |
UFF |
institution |
UFF |
reponame_str |
Sistemas & Gestão |
collection |
Sistemas & Gestão |
repository.name.fl_str_mv |
Sistemas & Gestão - Universidade Federal Fluminense (UFF) |
repository.mail.fl_str_mv |
||sg.revista@gmail.com|| periodicos@proppi.uff.br |
_version_ |
1798320143259926528 |