Predicting service time in a call center

Detalhes bibliográficos
Autor(a) principal: Bouzada, Marco Aurélio Carino
Data de Publicação: 2017
Tipo de documento: Artigo
Idioma: por
eng
Título da fonte: Sistemas & Gestão
Texto Completo: https://www.revistasg.uff.br/sg/article/view/650
Resumo: This paper describes - from the study of a case - the problem of forecasting the service average time (SAT), for a given product, in the call center of a large Brazilian company in the sector - Contax - and how it was approached with the use of multiple regression with dummy variables. After highlighting and justifying the importance of the topic, the study presents a brief review of the literature on methods for forecasting demand and its application in call centers. The case is described, initially, contextualizing the company studied and describing, next, the way it deals with the problem of forecasting SAT for the product 103 - services related to fixed telephony. A multiple regression model with dummy variables is then developed to serve as the basis of the proposed forecasting process. This model uses available information capable of influencing SAT, such as the day of the week, the occurrence or not of a holiday, and the proximity of the due date of the telephone bill; and it presented an accuracy gain of 2 percentage points for the study period when compared to the tool previously used.
id UFF-13_fe16872f2d40323d528cbdad463ad8b8
oai_identifier_str oai:ojs.www.revistasg.uff.br:article/650
network_acronym_str UFF-13
network_name_str Sistemas & Gestão
repository_id_str
spelling Predicting service time in a call centerPrevendo o tempo de atendimento em um call centerCenterService Average TimePredictionMultiple RegressionCall CenterTempo Médio de AtendimentoPrevisãoRegressão MúltiplaThis paper describes - from the study of a case - the problem of forecasting the service average time (SAT), for a given product, in the call center of a large Brazilian company in the sector - Contax - and how it was approached with the use of multiple regression with dummy variables. After highlighting and justifying the importance of the topic, the study presents a brief review of the literature on methods for forecasting demand and its application in call centers. The case is described, initially, contextualizing the company studied and describing, next, the way it deals with the problem of forecasting SAT for the product 103 - services related to fixed telephony. A multiple regression model with dummy variables is then developed to serve as the basis of the proposed forecasting process. This model uses available information capable of influencing SAT, such as the day of the week, the occurrence or not of a holiday, and the proximity of the due date of the telephone bill; and it presented an accuracy gain of 2 percentage points for the study period when compared to the tool previously used.Este trabalho descreve - a partir do estudo de um caso - o problema da previsão do tempo médio de atendimento (TMA), para um determinado produto, no call center de uma grande empresa brasileira do setor - a Contax - e como ele foi abordado com o uso de regressão múltipla com variáveis dummy. Depois de destacar e justificar a importância do tema, o estudo apresenta uma breve revisão da literatura acerca de métodos de previsão de demanda e de sua aplicação em call centers. O caso é descrito, inicialmente, contextualizando a empresa estudada e descrevendo, a seguir, a forma como a mesma lida com o problema de previsão do TMA para o produto 103 - serviços relacionados à telefonia fixa. Um modelo de regressão múltipla com variáveis dummy é então desenvolvido para servir como base do processo de previsão proposto. Este modelo utiliza informações disponíveis capazes de influenciar o TMA, tais como o dia da semana, a ocorrência ou não de feriado e a proximidade da data com o vencimento da conta telefônica; e apresentou ganhos de acurácia da ordem de 2 pontos percentuais para o período estudado, quando comparado com a ferramenta anteriormente em uso. ABEC2017-05-31info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfapplication/pdftext/htmltext/htmlhttps://www.revistasg.uff.br/sg/article/view/65010.20985/1980-5160.2016.v11n4.650Sistemas & Gestão; v. 11 n. 4 (2016): Dezembro/2016; 367-3791980-516010.20985/1980-5160.2016.v11n4reponame:Sistemas & Gestãoinstname:Universidade Federal Fluminense (UFF)instacron:UFFporenghttps://www.revistasg.uff.br/sg/article/view/650/522https://www.revistasg.uff.br/sg/article/view/650/534https://www.revistasg.uff.br/sg/article/view/650/545https://www.revistasg.uff.br/sg/article/view/650/562Copyright (c) 2017 Sistemas & Gestãoinfo:eu-repo/semantics/openAccessBouzada, Marco Aurélio Carino2020-05-29T17:31:31Zoai:ojs.www.revistasg.uff.br:article/650Revistahttps://www.revistasg.uff.br/sgPUBhttps://www.revistasg.uff.br/sg/oai||sg.revista@gmail.com|| periodicos@proppi.uff.br1980-51601980-5160opendoar:2020-05-29T17:31:31Sistemas & Gestão - Universidade Federal Fluminense (UFF)false
dc.title.none.fl_str_mv Predicting service time in a call center
Prevendo o tempo de atendimento em um call center
title Predicting service time in a call center
spellingShingle Predicting service time in a call center
Bouzada, Marco Aurélio Carino
Center
Service Average Time
Prediction
Multiple Regression
Call Center
Tempo Médio de Atendimento
Previsão
Regressão Múltipla
title_short Predicting service time in a call center
title_full Predicting service time in a call center
title_fullStr Predicting service time in a call center
title_full_unstemmed Predicting service time in a call center
title_sort Predicting service time in a call center
author Bouzada, Marco Aurélio Carino
author_facet Bouzada, Marco Aurélio Carino
author_role author
dc.contributor.author.fl_str_mv Bouzada, Marco Aurélio Carino
dc.subject.por.fl_str_mv Center
Service Average Time
Prediction
Multiple Regression
Call Center
Tempo Médio de Atendimento
Previsão
Regressão Múltipla
topic Center
Service Average Time
Prediction
Multiple Regression
Call Center
Tempo Médio de Atendimento
Previsão
Regressão Múltipla
description This paper describes - from the study of a case - the problem of forecasting the service average time (SAT), for a given product, in the call center of a large Brazilian company in the sector - Contax - and how it was approached with the use of multiple regression with dummy variables. After highlighting and justifying the importance of the topic, the study presents a brief review of the literature on methods for forecasting demand and its application in call centers. The case is described, initially, contextualizing the company studied and describing, next, the way it deals with the problem of forecasting SAT for the product 103 - services related to fixed telephony. A multiple regression model with dummy variables is then developed to serve as the basis of the proposed forecasting process. This model uses available information capable of influencing SAT, such as the day of the week, the occurrence or not of a holiday, and the proximity of the due date of the telephone bill; and it presented an accuracy gain of 2 percentage points for the study period when compared to the tool previously used.
publishDate 2017
dc.date.none.fl_str_mv 2017-05-31
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.revistasg.uff.br/sg/article/view/650
10.20985/1980-5160.2016.v11n4.650
url https://www.revistasg.uff.br/sg/article/view/650
identifier_str_mv 10.20985/1980-5160.2016.v11n4.650
dc.language.iso.fl_str_mv por
eng
language por
eng
dc.relation.none.fl_str_mv https://www.revistasg.uff.br/sg/article/view/650/522
https://www.revistasg.uff.br/sg/article/view/650/534
https://www.revistasg.uff.br/sg/article/view/650/545
https://www.revistasg.uff.br/sg/article/view/650/562
dc.rights.driver.fl_str_mv Copyright (c) 2017 Sistemas & Gestão
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2017 Sistemas & Gestão
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/pdf
text/html
text/html
dc.publisher.none.fl_str_mv ABEC
publisher.none.fl_str_mv ABEC
dc.source.none.fl_str_mv Sistemas & Gestão; v. 11 n. 4 (2016): Dezembro/2016; 367-379
1980-5160
10.20985/1980-5160.2016.v11n4
reponame:Sistemas & Gestão
instname:Universidade Federal Fluminense (UFF)
instacron:UFF
instname_str Universidade Federal Fluminense (UFF)
instacron_str UFF
institution UFF
reponame_str Sistemas & Gestão
collection Sistemas & Gestão
repository.name.fl_str_mv Sistemas & Gestão - Universidade Federal Fluminense (UFF)
repository.mail.fl_str_mv ||sg.revista@gmail.com|| periodicos@proppi.uff.br
_version_ 1798320143414067200