Predicting service time in a call center
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Tipo de documento: | Artigo |
Idioma: | por eng |
Título da fonte: | Sistemas & Gestão |
Texto Completo: | https://www.revistasg.uff.br/sg/article/view/650 |
Resumo: | This paper describes - from the study of a case - the problem of forecasting the service average time (SAT), for a given product, in the call center of a large Brazilian company in the sector - Contax - and how it was approached with the use of multiple regression with dummy variables. After highlighting and justifying the importance of the topic, the study presents a brief review of the literature on methods for forecasting demand and its application in call centers. The case is described, initially, contextualizing the company studied and describing, next, the way it deals with the problem of forecasting SAT for the product 103 - services related to fixed telephony. A multiple regression model with dummy variables is then developed to serve as the basis of the proposed forecasting process. This model uses available information capable of influencing SAT, such as the day of the week, the occurrence or not of a holiday, and the proximity of the due date of the telephone bill; and it presented an accuracy gain of 2 percentage points for the study period when compared to the tool previously used. |
id |
UFF-13_fe16872f2d40323d528cbdad463ad8b8 |
---|---|
oai_identifier_str |
oai:ojs.www.revistasg.uff.br:article/650 |
network_acronym_str |
UFF-13 |
network_name_str |
Sistemas & Gestão |
repository_id_str |
|
spelling |
Predicting service time in a call centerPrevendo o tempo de atendimento em um call centerCenterService Average TimePredictionMultiple RegressionCall CenterTempo Médio de AtendimentoPrevisãoRegressão MúltiplaThis paper describes - from the study of a case - the problem of forecasting the service average time (SAT), for a given product, in the call center of a large Brazilian company in the sector - Contax - and how it was approached with the use of multiple regression with dummy variables. After highlighting and justifying the importance of the topic, the study presents a brief review of the literature on methods for forecasting demand and its application in call centers. The case is described, initially, contextualizing the company studied and describing, next, the way it deals with the problem of forecasting SAT for the product 103 - services related to fixed telephony. A multiple regression model with dummy variables is then developed to serve as the basis of the proposed forecasting process. This model uses available information capable of influencing SAT, such as the day of the week, the occurrence or not of a holiday, and the proximity of the due date of the telephone bill; and it presented an accuracy gain of 2 percentage points for the study period when compared to the tool previously used.Este trabalho descreve - a partir do estudo de um caso - o problema da previsão do tempo médio de atendimento (TMA), para um determinado produto, no call center de uma grande empresa brasileira do setor - a Contax - e como ele foi abordado com o uso de regressão múltipla com variáveis dummy. Depois de destacar e justificar a importância do tema, o estudo apresenta uma breve revisão da literatura acerca de métodos de previsão de demanda e de sua aplicação em call centers. O caso é descrito, inicialmente, contextualizando a empresa estudada e descrevendo, a seguir, a forma como a mesma lida com o problema de previsão do TMA para o produto 103 - serviços relacionados à telefonia fixa. Um modelo de regressão múltipla com variáveis dummy é então desenvolvido para servir como base do processo de previsão proposto. Este modelo utiliza informações disponíveis capazes de influenciar o TMA, tais como o dia da semana, a ocorrência ou não de feriado e a proximidade da data com o vencimento da conta telefônica; e apresentou ganhos de acurácia da ordem de 2 pontos percentuais para o período estudado, quando comparado com a ferramenta anteriormente em uso. ABEC2017-05-31info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfapplication/pdftext/htmltext/htmlhttps://www.revistasg.uff.br/sg/article/view/65010.20985/1980-5160.2016.v11n4.650Sistemas & Gestão; v. 11 n. 4 (2016): Dezembro/2016; 367-3791980-516010.20985/1980-5160.2016.v11n4reponame:Sistemas & Gestãoinstname:Universidade Federal Fluminense (UFF)instacron:UFFporenghttps://www.revistasg.uff.br/sg/article/view/650/522https://www.revistasg.uff.br/sg/article/view/650/534https://www.revistasg.uff.br/sg/article/view/650/545https://www.revistasg.uff.br/sg/article/view/650/562Copyright (c) 2017 Sistemas & Gestãoinfo:eu-repo/semantics/openAccessBouzada, Marco Aurélio Carino2020-05-29T17:31:31Zoai:ojs.www.revistasg.uff.br:article/650Revistahttps://www.revistasg.uff.br/sgPUBhttps://www.revistasg.uff.br/sg/oai||sg.revista@gmail.com|| periodicos@proppi.uff.br1980-51601980-5160opendoar:2020-05-29T17:31:31Sistemas & Gestão - Universidade Federal Fluminense (UFF)false |
dc.title.none.fl_str_mv |
Predicting service time in a call center Prevendo o tempo de atendimento em um call center |
title |
Predicting service time in a call center |
spellingShingle |
Predicting service time in a call center Bouzada, Marco Aurélio Carino Center Service Average Time Prediction Multiple Regression Call Center Tempo Médio de Atendimento Previsão Regressão Múltipla |
title_short |
Predicting service time in a call center |
title_full |
Predicting service time in a call center |
title_fullStr |
Predicting service time in a call center |
title_full_unstemmed |
Predicting service time in a call center |
title_sort |
Predicting service time in a call center |
author |
Bouzada, Marco Aurélio Carino |
author_facet |
Bouzada, Marco Aurélio Carino |
author_role |
author |
dc.contributor.author.fl_str_mv |
Bouzada, Marco Aurélio Carino |
dc.subject.por.fl_str_mv |
Center Service Average Time Prediction Multiple Regression Call Center Tempo Médio de Atendimento Previsão Regressão Múltipla |
topic |
Center Service Average Time Prediction Multiple Regression Call Center Tempo Médio de Atendimento Previsão Regressão Múltipla |
description |
This paper describes - from the study of a case - the problem of forecasting the service average time (SAT), for a given product, in the call center of a large Brazilian company in the sector - Contax - and how it was approached with the use of multiple regression with dummy variables. After highlighting and justifying the importance of the topic, the study presents a brief review of the literature on methods for forecasting demand and its application in call centers. The case is described, initially, contextualizing the company studied and describing, next, the way it deals with the problem of forecasting SAT for the product 103 - services related to fixed telephony. A multiple regression model with dummy variables is then developed to serve as the basis of the proposed forecasting process. This model uses available information capable of influencing SAT, such as the day of the week, the occurrence or not of a holiday, and the proximity of the due date of the telephone bill; and it presented an accuracy gain of 2 percentage points for the study period when compared to the tool previously used. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-05-31 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.revistasg.uff.br/sg/article/view/650 10.20985/1980-5160.2016.v11n4.650 |
url |
https://www.revistasg.uff.br/sg/article/view/650 |
identifier_str_mv |
10.20985/1980-5160.2016.v11n4.650 |
dc.language.iso.fl_str_mv |
por eng |
language |
por eng |
dc.relation.none.fl_str_mv |
https://www.revistasg.uff.br/sg/article/view/650/522 https://www.revistasg.uff.br/sg/article/view/650/534 https://www.revistasg.uff.br/sg/article/view/650/545 https://www.revistasg.uff.br/sg/article/view/650/562 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2017 Sistemas & Gestão info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2017 Sistemas & Gestão |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf application/pdf text/html text/html |
dc.publisher.none.fl_str_mv |
ABEC |
publisher.none.fl_str_mv |
ABEC |
dc.source.none.fl_str_mv |
Sistemas & Gestão; v. 11 n. 4 (2016): Dezembro/2016; 367-379 1980-5160 10.20985/1980-5160.2016.v11n4 reponame:Sistemas & Gestão instname:Universidade Federal Fluminense (UFF) instacron:UFF |
instname_str |
Universidade Federal Fluminense (UFF) |
instacron_str |
UFF |
institution |
UFF |
reponame_str |
Sistemas & Gestão |
collection |
Sistemas & Gestão |
repository.name.fl_str_mv |
Sistemas & Gestão - Universidade Federal Fluminense (UFF) |
repository.mail.fl_str_mv |
||sg.revista@gmail.com|| periodicos@proppi.uff.br |
_version_ |
1798320143414067200 |